Ciencia habilitada por datos de especímenes

Tan, K., T. Lu, and M.-X. Ren. 2020. Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy. PhytoKeys 157: 7–26. https://doi.org/10.3897/phytokeys.157.34032

Based on an updated taxonomy of Gesneriaceae, the biogeography and evolution of the Asian Gesneriaceae are outlined and discussed. Most of the Asian Gesneriaceae belongs to Didymocarpoideae, except Titanotrichum was recently moved into Gesnerioideae. Most basal taxa of the Asian Gesneriaceae are fou…

de Jesús Hernández-Hernández, M., J. A. Cruz, and C. Castañeda-Posadas. 2020. Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences 104: 102827. https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Jahanshiri, E., N. M. Mohd Nizar, T. A. S. Tengku Mohd Suhairi, P. J. Gregory, A. S. Mohamed, E. M. Wimalasiri, and S. N. Azam-Ali. 2020. A Land Evaluation Framework for Agricultural Diversification. Sustainability 12: 3110. https://doi.org/10.3390/su12083110

Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…

Holzmeyer, L., A.-K. Hartig, K. Franke, W. Brandt, A. N. Muellner-Riehl, L. A. Wessjohann, and J. Schnitzler. 2020. Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences 117: 12444–12451. https://doi.org/10.1073/pnas.1915277117

Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the …

Reginato, M., T. N. C. Vasconcelos, R. Kriebel, and A. O. Simões. 2020. Is dispersal mode a driver of diversification and geographical distribution in the tropical plant family Melastomataceae? Molecular Phylogenetics and Evolution 148: 106815. https://doi.org/10.1016/j.ympev.2020.106815

Species of plants with different life history strategies may differ in their seed dispersal mechanisms, impacting their distribution and diversification patterns. Shorter or longer distance dispersal is favored by different dispersal modes, facilitating (or constraining) population isolation, which …

Klages, J. P., U. Salzmann, T. Bickert, C.-D. Hillenbrand, K. Gohl, G. Kuhn, et al. 2020. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580: 81–86. https://doi.org/10.1038/s41586-020-2148-5

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether p…

Li, M., J. He, Z. Zhao, R. Lyu, M. Yao, J. Cheng, and L. Xie. 2020. Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ 8: e8729. https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

Ringelberg, J. J., N. E. Zimmermann, A. Weeks, M. Lavin, and C. E. Hughes. 2020. Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome A. Moles [ed.],. Global Ecology and Biogeography 29: 1100–1113. https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…

Carrasco, J., V. Price, V. Tulloch, and M. Mills. 2020. Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodiversity and Conservation 29: 1841–1854. https://doi.org/10.1007/s10531-020-01947-1

Madagascar is one of the most biodiverse countries in Africa, due to its level of endemism and species diversity. However, the pressure of human activities threatens the last patches of natural vegetation in the country and conservation decisions are undertaken with limited data availability. In thi…

Asase, A., M. N. Sainge, R. A. Radji, O. A. Ugbogu, and A. T. Peterson. 2020. A new model for efficient, need‐driven progress in generating primary biodiversity information resources. Applications in Plant Sciences 8. https://doi.org/10.1002/aps3.11318

Premise: The field of biodiversity informatics has developed rapidly in recent years, with broad availability of large‐scale information resources. However, online biodiversity information is biased spatially as a result of slow and uneven capture and digitization of existing data resources. The Wes…