Ciencia habilitada por datos de especímenes
Graham, K. K., P. Glaum, J. Hartert, J. Gibbs, E. Tucker, R. Isaacs, and F. S. Valdovinos. 2024. A century of wild bee sampling: historical data and neural network analysis reveal ecological traits associated with species loss. Proceedings of the Royal Society B: Biological Sciences 291. https://doi.org/10.1098/rspb.2023.2837
We analysed the wild bee community sampled from 1921 to 2018 at a nature preserve in southern Michigan, USA, to study long-term community shifts in a protected area. During an intensive survey in 1972 and 1973, Francis C. Evans detected 135 bee species. In the most recent intensive surveys conducted in 2017 and 2018, we recorded 90 species. Only 58 species were recorded in both sampling periods, indicating a significant shift in the bee community. We found that the bee community diversity, species richness and evenness were all lower in recent samples. Additionally, 64% of the more common species exhibited a more than 30% decline in relative abundance. Neural network analysis of species traits revealed that extirpation from the reserve was most likely for oligolectic ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-nesting bees were more likely to persist. Having longer phenological ranges also increased the chance of persistence in polylectic species. Further analysis suggests a climate response as bees in the contemporary sampling period had a more southerly overall distribution compared to the historic community. Results exhibit the utility of both long-term data and machine learning in disentangling complex indicators of bee population trajectories.
László, Z., C. Looney, H. Prázsmári, E. Poor, and J. D. Shorthouse. 2024. The cynipid gall wasp Diplolepis rosae is more successful in North America than in Europe because of enemy release. Insect Conservation and Diversity. https://doi.org/10.1111/icad.12745
The Enemy Release Hypothesis predicts that introduced species in their new range are freed from natural enemies (e.g., pathogens, parasitoids and predators) that control their populations.Diplolepis rosae (Hymenoptera, Diplolepididae), native to the Western Palearctic, induces readily apparent galls on wild roses (Rosa spp.) that support a robust component community of inquilines, parasitoids and hyperparasitoids in its native range. D. rosae was introduced to North America in the mid‐1800s, and has since become widespread and common across the continent.We compared the insect communities associated with D. rosae galls from Canada and the US Pacific Northwest with those of Eastern Europe.Throughout its introduced range, parasitism rates were lower compared with galls in their natural range. Component communities were also less diverse and species‐rich. The relationship between gall size and parasitism rates showed no significant difference between the two continents.These results show that the component community in its introduced range is depauperate and provide support for the Enemy Release Hypothesis.
López‐Aguilar, T. P., J. Montalva, B. Vilela, M. P. Arbetman, M. A. Aizen, C. L. Morales, and D. de P. Silva. 2024. Niche analyses and the potential distribution of four invasive bumblebees worldwide. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11200
The introduction of bees for agricultural production in distinct parts of the world and poor management have led to invasion processes that affect biodiversity, significantly impacting native species. Different Bombus species with invasive potential have been recorded spreading in different regions worldwide, generating ecological and economic losses. We applied environmental niche and potential distribution analyses to four species of the genus Bombus to evaluate the similarities and differences between their native and invaded ranges. We found that B. impatiens has an extended environmental niche, going from dry environmental conditions in the native range to warmer and wetter conditions in the invaded range. Bombus ruderatus also exhibited an extended environmental niche with drier and warmer conditions in the invaded range than in its native range. Bombus subterraneus expanded its environmental niche from cooler and wetter conditions in the native range to drier and warmer conditions in the invaded range. Finally, B. terrestris showed the most significant variation in the environmental niche, extending to areas with similar and different environmental conditions from its native range. The distribution models agreed with the known distributions for the four Bombus species, presenting geographic areas known to be occupied by each species in different regions worldwide. The niche analysis indicate shifts in the niches from the native to the invaded distribution area of the bee species. Still, niche similarities were observed in the areas of greatest suitability in the potential distribution for B. ruderatus, B. subterraneus, and B. terrestris, and to a lesser degree in the same areas with B. impatiens. These species require similar environmental conditions as in their native ranges to be established in their introduced ranges. Still, they can adapt to changes in temperature and humidity, allowing them to expand their ranges into new climatic conditions.
Krivosheeva, V., A. Solodovnikov, A. Shulepov, D. Semerikova, A. Ivanova, and M. Salnitska. 2023. Assessment of the DNA barcode libraries for the study of the poorly-known rove beetle (Staphylinidae) fauna of West Siberia. Biodiversity Data Journal 11. https://doi.org/10.3897/bdj.11.e115477
Staphylinidae, or rove beetles, are one of the mega-diverse and abundant families of the ground-living terrestrial arthropods that is taxonomically poorly known even in the regions adjacent to Europe where the fauna has been investigated for the longest time. Since DNA barcoding is a tool to accelerate biodiversity research, here we explored if the currently-available COI barcode libraries are representative enough for the study of rove beetles of West Siberia. This is a vast region adjacent to Europe with poorly-known fauna of rove beetles and from where not a single DNA barcode has hitherto been produced for Staphylinidae. First, we investigated the faunal similarity between the rove beetle faunas of the climatically compatible West Siberia in Asia, Fennoscandia in Europe and Canada and Alaska in North America. Second, we investigated barcodes available for Staphylinidae from the latter two regions in BOLD and GenBank, the world's largest DNA barcode libraries. We conclude that the rather different rove beetle faunas of Fennoscandia, on the one hand and Canada and Alaska on the other hand, are well covered in both barcode libraries that complement each other. We also find that even without any barcodes originating from specimens collected in West Siberia, this coverage is helpful for the study of rove beetles there due to the significant number of widespread species shared between West Siberia and Fennoscandia and due to the even larger number of shared genera amongst all three investigated regions. For the first time, we compiled a literature-based checklist for 726 species of the West Siberian Staphylinidae supplemented by their occurrence dataset submitted to GBIF. Our script written for mining unique (i.e. not redundant) barcodes for a given geographic area across global libraries is made available here and can be adopted for any other regions.
Ranjbaran, Y., D. Rödder, R. Saberi-Pirooz, and F. Ahmadzadeh. 2024. What happens in ice age, does not stay in ice age: Phylogeography of Bombus terrestris revealed a low genetic diversity amongst the Eurasian populations. Global Ecology and Conservation 49: e02775. https://doi.org/10.1016/j.gecco.2023.e02775
The objective of this research was to assess the genetic diversity and phylogeography of Bombus terrestris and examine the historical events that shaped its contemporary genetic structures using the COI mitochondrial marker. Specimens of the species were collected from its distribution range alongside the Alborz Mountain range, and GenBank sequences from the Eurasian distribution range were incorporated into the dataset. The COI sequences were employed in Bayesian and Maximum Likelihood analyses to generate phylogenetic trees for the species populations and to investigate the evolutionary history of the species. Additionally, species occurrence points and climate data were utilized in Species Distribution Modeling (SDM) analyses to reconstruct the species range under past, present, and future climate conditions. The ML and BI trees yielded similar topologies, indicating extremely low genetic diversity and a homogeneous structure in the species population distribution range in Eurasia. Demographic analyses suggested that the species may have experienced a bottleneck during the last glacial maximum in Eurasia, followed by a recent expansion. The SDM analyses revealed significant fluctuations in the species range in the past and expansion under present conditions. Given the high dispersal ability of the species, the population expansion rate has surpassed the rate of developing new genetic diversity, and the estimated polymorphic sites for the species are likely relatively recent. This low level of genetic variation can also be attributed to the absence of geographical barriers and the excellent flying ability of the queen bee, leading to sustained gene flow throughout the entire continent. Despite the general correlation between larger populations and higher genetic diversity, bumblebees can expand their population size without increasing genetic diversity when residing in resourceful habitats.
Bharti, D. K., P. Y. Pawar, G. D. Edgecombe, and J. Joshi. 2023. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). Global Ecology and Biogeography. https://doi.org/10.1111/geb.13709
Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0–0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.
Kolanowska, M. 2023. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species. Scientific Reports 13. https://doi.org/10.1038/s41598-023-33856-y
The first comprehensive species distribution models for orchid, its fungal symbionts and pollinator are presented. To evaluate impact of global warming on these organisms three different projections and four various climate change scenarios were analysed. The niche modelling was based on presence-only records of Limodorum abortivum , two species of Russula and three insects pollinating orchid ( Anthophora affinis, Bombus terrestris, Rhodanthidium septemdentatum ). Two sets of orchid predictions were examined—the first one included only climatic data and the second one was based on climate data and data on future distribution of orchid fungal symbionts. Overall, a poleward range shift is predicted to occur as a result of climate change and apparently global warming will be favorable for L. abortivum and its potential geographical range will expand. However, due to the negative effect of global warming on fungal symbionts of L. abortivum , the actual extension of the suitable niches of the orchid will be much limited. Considering future possibility of cross-pollination, the availability of A. affinis for L. abortivum will decrease and this bee will be available in the worst case scenarios only for 21% of orchid populations. On the other hand, the overlap of orchid and the buff-tailed bumblebee will increase and as much as 86.5% of plant populations will be located within B. terrestris potential range. Also the availability of R. septemdentatum will be higher than currently observed in almost all analysed climate change projections. This study showed the importance of inclusion of ecological factors in species distribution models as the climate data itself are not enough to estimate the future distribution of plant species. Moreover, the availability of pollen vectors which is crucial for long-term survival of orchid populations should be analysed in context of climate changes.
Li, D., Z. Li, Z. Liu, Y. Yang, A. G. Khoso, L. Wang, and D. Liu. 2022. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. Journal of Pest Science. https://doi.org/10.1007/s10340-022-01479-3
Climate change will cause drastic fluctuations in agricultural ecosystems, which in turn may affect global food security. We used ecological niche modeling to predict the potential distribution for four cereal aphids (i.e., Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum, and Diurphis noxia…
Kolanowska, M. 2021. The future of a montane orchid species and the impact of climate change on the distribution of its pollinators and magnet species. Global Ecology and Conservation 32: e01939. https://doi.org/10.1016/j.gecco.2021.e01939
The aim of this study was to evaluate the impact of global warming on suitable niches of montane orchid, Traunsteinera globosa, using ecological niche modelling approach. Additionally, the effect of various climate change scenarios on future changes in the distribution and overlap of the orchid magn…
Ji, Y. 2021. The geographical origin, refugia, and diversification of honey bees (Apis spp.) based on biogeography and niche modeling. Apidologie 52: 367–377. https://doi.org/10.1007/s13592-020-00826-6
An understanding of the origin and formation of biodiversity and distribution patterns can provide a theoretical foundation for biodiversity conservation. In this study, phylogeny and biogeography analyses based on mitochondrial genomes and niche modeling based on occurrence records were performed t…