Ciencia habilitada por datos de especímenes

Bontrager, M., Usui, T., Lee‐Yaw, J. A., Anstett, D. N., Branch, H. A., Hargreaves, A. L., … Angert, A. L. (2021). Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution. doi:10.1111/evo.14231 https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Rock, B. M., & Daru, B. H. (2021). Impediments to Understanding Seagrasses’ Response to Global Change. Frontiers in Marine Science, 8. doi:10.3389/fmars.2021.608867 https://doi.org/10.3389/fmars.2021.608867

Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists in understanding species sensitivity to anthropogenic climate change. Here, we synthesize possible impediments that can constrain research to assess present and future seagrass response from climate chang…

Briscoe Runquist, R. D., Lake, T. A., & Moeller, D. A. (2021). Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co‐occurring species. Journal of Biogeography. doi:10.1111/jbi.14105 https://doi.org/10.1111/jbi.14105

Aims: Species distribution models (SDMs) are often used to forecast potential distributions of important invasive or rare species. However, situations where models could be the most valuable ecologically or economically, such as for predicting invasion risk, often pose the greatest challenges to SDM…

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Géron, C., Lembrechts, J. J., Borgelt, J., Lenoir, J., Hamdi, R., Mahy, G., … Monty, A. (2021). Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions. doi:10.1007/s10530-021-02469-9 https://doi.org/10.1007/s10530-021-02469-9

When colonizing new areas, alien plant species success can depend strongly on local environmental conditions. Microclimatic barriers might be the reason why some alien plant species thrive in urban areas, while others prefer rural environments. We tested the hypothesis that the climate in the native…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Brendel, M. R., Schurr, F. M., & Sheppard, C. S. (2020). Inter‐ and intraspecific selection in alien plants: How population growth, functional traits and climate responses change with residence time. Global Ecology and Biogeography. doi:10.1111/geb.13228 https://doi.org/10.1111/geb.13228

Aim: When alien species are introduced to new ranges, climate or trait mismatches may initially constrain their population growth. However, inter‐ and intraspecific selection in the new environment should cause population growth rates to increase with residence time. Using a species‐for‐time approac…

Jayathilake, D. R. M., & Costello, M. J. (2018). A modelled global distribution of the seagrass biome. Biological Conservation, 226, 120–126. doi:10.1016/j.biocon.2018.07.009 https://doi.org/10.1016/j.biocon.2018.07.009

Seagrasses form one of the most ecologically important and productive three-dimensional habitats in coastal seas. Knowing the global distribution of seagrass meadows is essential for conservation and blue carbon estimates. Here, we modelled the global distribution of seagrass using 43,037 occurrence…

Mason, C. M., LaScaleia, M. C., De La Pascua, D. R., Monroe, J. G., & Goolsby, E. W. (2020). Learning from Dynamic Traits: Seasonal Shifts Yield Insights into Ecophysiological Trade-Offs across Scales from Macroevolutionary to Intraindividual. International Journal of Plant Sciences, 181(1), 88–102. doi:10.1086/706238 https://doi.org/10.1086/706238

Premise of the Research. Phylogenetic comparative methods provide a powerful approach for exploring the macroevolution of plant functional traits. Such approaches can uncover trait-trait correlations through evolutionary time, as well as provide evidence of the role of traits in adaptation across en…

De La Pascua, D. R., Smith‐Winterscheidt, C., Dowell, J. A., Goolsby, E. W., & Mason, C. M. (2020). Evolutionary trade‐offs in the chemical defense of floral and fruit tissues across genus Cornus. American Journal of Botany, 107(9), 1260–1273. doi:10.1002/ajb2.1540 https://doi.org/10.1002/ajb2.1540

Premise: Defense investment in plant reproductive structures is relatively understudied compared to the defense of vegetative organs. Here the evolution of chemical defenses in reproductive structures is examined in light of the optimal defense, apparency, and resource availability hypotheses within…