Ciencia habilitada por datos de especímenes

Klages, J. P., Salzmann, U., Bickert, T., Hillenbrand, C.-D., Gohl, K., … Dziadek, R. (2020). Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 580(7801), 81–86. doi:10.1038/s41586-020-2148-5 https://doi.org/10.1038/s41586-020-2148-5

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether p…

Li, M., He, J., Zhao, Z., Lyu, R., Yao, M., Cheng, J., & Xie, L. (2020). Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, e8729. doi:10.7717/peerj.8729 https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M., & Hughes, C. E. (2020). Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome. Global Ecology and Biogeography. doi:10.1111/geb.13089 https://doi.org/10.1111/geb.13089

Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…

Smith, A. L., Hodkinson, T. R., Villellas, J., Catford, J. A., Csergő, A. M., Blomberg, S. P., … Buckley, Y. M. (2020). Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences, 117(8), 4218–4227. doi:10.1073/pnas.1915848117 https://doi.org/10.1073/pnas.1915848117

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic div…

Han, T., Zheng, Q., Onstein, R. E., Rojas‐Andrés, B. M., Hauenschild, F., Muellner‐Riehl, A. N., & Xing, Y. (2019). Polyploidy promotes species diversification of Allium through ecological shifts. New Phytologist. doi:10.1111/nph.16098 https://doi.org/10.1111/nph.16098

Despite the role of polyploidy in multiple evolutionary processes, its impact on plant diversification remains controversial. An increased polyploid frequency may facilitate speciation through shifts in ecology, morphology, or both. Here we used Allium to evaluate (1) the relationship between intras…

Fletcher, T. L., Warden, L., Sinninghe Damsté, J. S., Brown, K. J., Rybczynski, N., Gosse, J. C., & Ballantyne, A. P. (2019). Evidence for fire in the Pliocene Arctic in response to amplified temperature. Climate of the Past, 15(3), 1063–1081. doi:10.5194/cp-15-1063-2019 https://doi.org/10.5194/cp-15-1063-2019

The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intr…

Schubert, M., Marcussen, T., Meseguer, A. S., & Fjellheim, S. (2019). The grass subfamily Pooideae: Cretaceous–Palaeocene origin and climate‐driven Cenozoic diversification. Global Ecology and Biogeography. doi:10.1111/geb.12923 https://doi.org/10.1111/geb.12923

Aim: Frost is among the most dramatic stresses a plant can experience, and complex physiological adaptations are needed to endure long periods of sub‐zero temperatures. Owing to the need to evolve these complex adaptations, transitioning from tropical to temperate climates is regarded as difficult. …

Folk, R. A., Stubbs, R. L., Mort, M. E., Cellinese, N., Allen, J. M., Soltis, P. S., … Guralnick, R. P. (2019). Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences, 116(22), 10874–10882. doi:10.1073/pnas.1817999116 https://doi.org/10.1073/pnas.1817999116

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and…

Karger, D. N., Kessler, M., Conrad, O., Weigelt, P., Kreft, H., König, C., & Zimmermann, N. E. (2019). Why tree lines are lower on islands-Climatic and biogeographic effects hold the answer. Global Ecology and Biogeography. doi:10.1111/geb.12897 https://doi.org/10.1111/geb.12897

Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…

Sheppard, C. S., & Schurr, F. M. (2018). Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Global Ecology and Biogeography. doi:10.1111/geb.12844 https://doi.org/10.1111/geb.12844

Aim: Invasions are dynamic processes. Invasive spread causes the geographical range size of alien species to increase with residence time. However, with time native competitors and antagonists can adapt to invaders. This build‐up of biotic resistance may eventually limit the invader’s performance an…