Ciencia habilitada por datos de especímenes

Tang, T., Y. Zhu, Y.-Y. Zhang, J.-J. Chen, J.-B. Tian, Q. Xu, B.-G. Jiang, et al. 2024. The global distribution and the risk prediction of relapsing fever group Borrelia: a data review with modelling analysis. The Lancet Microbe. https://doi.org/10.1016/s2666-5247(23)00396-8

Background The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB.MethodsWe searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level.FindingsWe retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km2, followed by B lonestari (1·69 million km2), B crocidurae (1·67 million km2), and B hermsii (1·48 million km2). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species.InterpretationThe predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions.FundingNational Key Research and Development Program of China.

Li, D., X. Wang, K. Jiang, R. An, Y. Li, and D. Liu. 2024. The impact of climate change and the conservation of the keystone Asian honeybee using niche models and systematic prioritization C. Bahlai [ed.],. Journal of Economic Entomology. https://doi.org/10.1093/jee/toae018

Global warming has seriously disturbed the Earth’s ecosystems, and in this context, Asian honeybee (Apis cerana) has experienced a dramatic decline in recent decades. Here, we examined both direct and indirect effects of climate change on A. cerana through ecological niche modeling of A. cerana, and its disease pathogens (i.e., Chinese sacbrood virus and Melissococcus plutonius) and enemies (i.e., Galleria mellonella and Vespa mandarinia). Ecological niche modeling predicts that climate change will increase the potential suitability of A. cerana, but it will also cause some of the original habitat areas to become unsuitable. Outbreak risks of Chinese sacbrood disease and European Foulbrood will increase dramatically, while those of G. mellonella and V. mandarinia will decrease only slightly. Thus, climate change will produce an unfavorable situation for even maintaining some A. cerana populations in China in the future. Genetic structure analyses showed that the A. cerana population from Hainan Island had significant genetic differentiation from that of the mainland, and there was almost no gene flow between the 2, suggesting that urgent measures are needed to protect the unique genetic resources there. Through taking an integrated planning technique with the Marxan approach, we optimized conservation planning, and identified potential nature reserves (mainly in western Sichuan and southern Tibet) for conservation of A. cerana populations. Our results can provide insights into the potential impact of climate change on A. cerana, and will help to promote the conservation of the keystone honeybee in China and the long-term sustainability of its ecosystem services.

Boxler, B. M., C. S. Loftin, and W. B. Sutton. 2024. Monarch Butterfly (Danaus plexippus) Roost Site-Selection Criteria and Locations East of the Appalachian Mountains, U.S.A. Journal of Insect Behavior. https://doi.org/10.1007/s10905-023-09844-5

The monarch butterfly is a flagship species and pollinator whose populations have declined by 85% in the recent two decades. Their largest population overwinters in Mexico, then disperses across eastern North America during March to August. During September-December, they return south using two flyways, one that spans the central United States and another that follows the Atlantic coast. Migrating monarchs fly diurnally and roost in groups nocturnally. We sought to determine the criteria this species uses to select roost sites, and the landscape context where those sites are found. We developed species distribution models of the landscape context of Atlantic flyway roost sites via citizen scientist observations and environmental variables that affect monarchs in the adult stage prior to migration, using two algorithms (Maximum Entropy and Genetic Algorithm for Ruleset Prediction). We developed two model validation methods: a citizen scientist smartphone application and peer-informed comparisons with aerial imagery. Proximity to surface water, elevation, and vegetative cover were the most important criteria for monarch roost site selection. Our model predicted 2.6 million ha (2.9% of the study area) of suitable roosting habitat in the Atlantic flyway, with the greatest availability along the Atlantic coastal plain and Appalachian Mountain ridges. Conservation of this species is difficult, as monarchs range over both large areas and various habitat types, and most current monarch research and conservation efforts are focused on the breeding and overwintering periods. These models can serve to help prioritize surveys of roosting sites and conservation efforts during the monarchs’ fall migration.

Hebets, E. A., M. Oviedo-Diego, F. Cargnelutti, F. Bollatti, L. Calbacho-Rosa, C. I. Mattoni, P. Olivero, et al. 2023. A scientist’s guide to Solifugae: how solifuges could advance research in ecology, evolution, and behaviour. Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlad174

Despite having >1200 described species and despite their nearly worldwide distribution and prevalence in many xeric ecosystems, relative to many other arachnid groups, we know little about the natural history and behaviour of animals in the order Solifugae (camel spiders, sun spiders, sun scorpions, etc.). Here, we review the current solifuge literature through the lens of conceptual research areas in ecology, evolution, and behaviour and propose ways in which solifuges can contribute to research in specific subfields, as follows: (i) ecology: community and trophic dynamics; connecting food webs; habitat specialization; and biodiversity and conservation; (ii) evolution: speciation and diversification; activity cycles and associated traits; adaptations for speed; and living in extreme environments; and (iii) behaviour and sensory systems: sleep, quiescence, and diapause; sensory systems and sensory ecology; learning and cognition; and mating systems, sexual selection, and sexual conflict. This resource can provide a starting point for identifying research programmes that will simultaneously contribute basic natural history information about this under-studied group and provide a broader understanding of fundamental concepts and theories across the life sciences. We hope that scientists will take this review as a challenge to develop creative ways of leveraging the unique features of solifuges to advance scientific knowledge and understanding.

Feuerborn, C., G. Quinlan, R. Shippee, T. L. Strausser, T. Terranova, C. M. Grozinger, and H. M. Hines. 2023. Variance in heat tolerance in bumble bees correlates with species geographic range and is associated with several environmental and biological factors. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10730

Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance in Bombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change.

García-Navarrete, P. G., L. A. Sánchez-González, and J. J. Morrone. 2023. Biogeographical affinities of the biota of the Tres Marías Islands, Mexico. Biological Journal of the Linnean Society. https://doi.org/10.1093/biolinnean/blad101

The Tres Marías archipelago in the central Mexican Pacific is a protected area that has a complex geological history due to its tectonic setting. This study describes an integrative analysis of the biogeographical affinities of the biota inhabiting the islands. A biotic component analysis showed a close relationship between the islands and the Pacific Lowlands and Veracruzan biogeographical provinces, whereas a cladistic biogeographical analysis additionally showed a Nearctic affinity with the Sonoran biogeographical province. The biogeographical affinity patterns, based on the distribution of the sister group of each endemic species, revealed three distinct patterns: Neotropical, Sonoran-Neotropical and Nearctic-Neotropical. The study recognized that the Tres Marías Islands are a region of great biological complexity where the biota of the Pacific Lowlands and the Veracruzan provinces intersect, with a predominantly Neotropical affinity. In this biogeographical analysis, information on the biotic assemblage and the geological history of the Tres Marías Islands are integrated and discussed. The biotic assembly of the islands must have occurred via both vicariance and dispersal at different geological times, related to opening of the Gulf of California (Miocene–Pleistocene) as well as to periods of glaciation (Pleistocene).

Kolanowska, M. 2023. Future distribution of the epiphytic leafless orchid (Dendrophylax lindenii), its pollinators and phorophytes evaluated using niche modelling and three different climate change projections. Scientific Reports 13. https://doi.org/10.1038/s41598-023-42573-5

The identification of future refugia for endangered species from the effects of global warming is crucial for improving their conservation. Because climate-driven shifts in ranges and local extinctions can result in a spatial mismatch with their symbiotic organisms, however, it is important to incorporate in niche modelling the ecological partners of the species studied. The aim of this study was to evaluate the effect of climate change on the distribution of suitable niches for the ghost orchid ( Dendrophylax lindenii ) and its phorophytes and pollinators. Thus, its five species of host trees and three pollen vectors were included in the analysis. Climatic preferences of all the species studied were evaluated. The modelling was based on three different climate change projections and four Shared Socio-economic Pathway trajectories. All the species analysed are characterized by narrow temperature tolerances, which with global warming are likely to result in local extinctions and range shifts. D. lindenii is likely to be subjected to a significant loss of suitable niches, but within a reduced geographical range, both host trees and pollen vectors will be available in the future. Future conservation of this orchid should focus on areas that are likely be suitable for it and its ecological partners.

Kopsco, H. L., P. Gronemeyer, N. Mateus-Pinilla, and R. L. Smith. 2023. Current and Future Habitat Suitability Models for Four Ticks of Medical Concern in Illinois, USA. Insects 14: 213. https://doi.org/10.3390/insects14030213

The greater U.S. Midwest is on the leading edge of tick and tick-borne disease (TBD) expansion, with tick and TBD encroachment into Illinois occurring from both the northern and the southern regions. To assess the historical and future habitat suitability of four ticks of medical concern within the state, we fit individual and mean-weighted ensemble species distribution models for Ixodes scapularis, Amblyomma americanum, Dermacentor variabilis, and a newly invading species, Amblyomma maculatum using a variety of landscape and mean climate variables for the periods of 1970–2000, 2041–2060, and 2061–2080. Ensemble model projections for the historical climate were consistent with known distributions of each species but predicted the habitat suitability of A. maculatum to be much greater throughout Illinois than what known distributions demonstrate. The presence of forests and wetlands were the most important landcover classes predicting the occurrence of all tick species. As the climate warmed, the expected distribution of all species became strongly responsive to precipitation and temperature variables, particularly precipitation of the warmest quarter and mean diurnal range, as well as proximity to forest cover and water sources. The suitable habitat for I. scapularis, A. americanum, and A. maculatum was predicted to significantly narrow in the 2050 climate scenario and then increase more broadly statewide in the 2070 scenario but at reduced likelihoods. Predicting where ticks may invade and concentrate as the climate changes will be important to anticipate, prevent, and treat TBD in Illinois.

Grigoropoulou, A., S. A. Hamid, R. Acosta, E. O. Akindele, S. A. Al‐Shami, F. Altermatt, G. Amatulli, et al. 2023. The global EPTO database: Worldwide occurrences of aquatic insects. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13648

Motivation Aquatic insects comprise 64% of freshwater animal diversity and are widely used as bioindicators to assess water quality impairment and freshwater ecosystem health, as well as to test ecological hypotheses. Despite their importance, a comprehensive, global database of aquatic insect occurrences for mapping freshwater biodiversity in macroecological studies and applied freshwater research is missing. We aim to fill this gap and present the Global EPTO Database, which includes worldwide geo-referenced aquatic insect occurrence records for four major taxa groups: Ephemeroptera, Plecoptera, Trichoptera and Odonata (EPTO). Main type of variables contained A total of 8,368,467 occurrence records globally, of which 8,319,689 (99%) are publicly available. The records are attributed to the corresponding drainage basin and sub-catchment based on the Hydrography90m dataset and are accompanied by the elevation value, the freshwater ecoregion and the protection status of their location. Spatial location and grain The database covers the global extent, with 86% of the observation records having coordinates with at least four decimal digits (11.1 m precision at the equator) in the World Geodetic System 1984 (WGS84) coordinate reference system. Time period and grain Sampling years span from 1951 to 2021. Ninety-nine percent of the records have information on the year of the observation, 95% on the year and month, while 94% have a complete date. In the case of seven sub-datasets, exact dates can be retrieved upon communication with the data contributors. Major taxa and level of measurement Ephemeroptera, Plecoptera, Trichoptera and Odonata, standardized at the genus taxonomic level. We provide species names for 7,727,980 (93%) records without further taxonomic verification. Software format The entire tab-separated value (.csv) database can be downloaded and visualized at https://glowabio.org/project/epto_database/. Fifty individual datasets are also available at https://fred.igb-berlin.de, while six datasets have restricted access. For the latter, we share metadata and the contact details of the authors.

LIZARDO, V., V. MOCTEZUMA, and F. ESCOBAR. 2022. Distribution, Regionalization, and Diversity of the dung beetle genus Phanaeus MacLeay (Coleoptera: Scarabaeidae) using Species Distribution Models. Zootaxa 5213: 546–568. https://doi.org/10.11646/zootaxa.5213.5.4

The genus Phanaeus is a well-known group whose taxonomy has been described multiple times. Its distribution was previously classified into 11 ecogeographic groups that are equivalent to areas of endemism. Here we use Species Distribution Models to describe species richness patterns. We measured beta-diversity and regionalized its distribution into one region and one transition zone, both with three dominions: Mexican Transition Zone (North American, Mexican, and Mesoamerican dominions) and Neotropical region (Pacific, Brazilian, and Atlantic Forest dominions). We also present a species checklist and updated the distribution maps for 73 of 81 species described so far that reflects all the taxonomical updates. We include a list of all the recorded locations (by country, state, and province), list the recorded habitats and biomes, and describe the modelled environmental conditions for each species.