Bionomía estará fuera de línea 2024-06-15 12:00 UTC por 1 hr para actualizar datos de especímenes de la Global Biodiversity Information Facility.

Ciencia habilitada por datos de especímenes

Dantas, V. L., L. C. S. Oliveira, C. R. Marcati, and J. Sonsin‐Oliveira. 2024. Coordination of bark and wood traits underlies forest‐to‐savanna evolutionary transitions. Journal of Biogeography. https://doi.org/10.1111/jbi.14850

Aim To test the hypothesis that adaptive shifts leading to the assembly of tropical savannas involved coordination between bark and wood traits and to understand the underlying mechanisms.LocationTropical South America.TaxonAngiosperms (woody).MethodsWe compiled data on three bark traits (total, inner and outer relative bark thickness), wood density, maximum height, five secondary xylem traits and on species' habitat information (light environment, climate, soil and fire history) for Neotropical savanna, forest and generalist species (biome groups). We tested for pairwise and multivariate associations among traits across species and if biome group and habitat conditions explained species positions along the resulting strategy axes.ResultsTraits covaried along four different axes. The first axis was consistent with a trade‐off between fire (thick barks) and shade tolerance (low bark to diameter ratio, high vessel density) and contributed to differentiate the three biome groups according to the preference for shaded environments. Forest species also differed from savanna and generalist species in a separate axis by being more resource acquisitive. Maximum height and wood density did not strongly trade‐off with bark thickness, although maximum height was negatively covaried with relative outer bark thickness. Preference for shaded conditions was the main driver of variation in the two principal strategy axes, but temperature, fire and soil sand content also explained differences in plant stature between savanna and generalist species.Main ConclusionsAllocation to bark is constrained by trade‐offs with wood, opposing shade‐tolerant and acquisitive forest species to fire‐resistant and conservative savanna species. Rather than a single strategy axis, three axes are necessary to understand the functional differences among savanna, forest and generalist species. Because two of these axes are controlled by light availability, the associated traits tend to covary in space and time, but not across species.

Louw, G. J., L. J. Potgieter, and D. M. Richardson. 2024. Myoporum (Scrophulariaceae): Introduction, naturalization, and invasion of an enigmatic tree genus in South Africa. South African Journal of Botany 168: 529–541. https://doi.org/10.1016/j.sajb.2024.03.022

Myoporum is a genus of trees and shrubs native to the Northern Hemisphere that has been introduced to many parts of the world, mainly for ornamental purposes. We assessed the introduction history, distribution, and extent of naturalization/invasion for Myoporum species in South Africa.Information was collated to determine key events associated with the introduction, establishment, and naturalization of Myoporum in South Africa. Data were collated to determine the current distribution of the genus in South Africa. Twenty sites in the Western Cape were sampled to determine correlates of naturalization. Myoporum was first recorded in South Africa in 1934. Three species were confirmed to be present in South Africa: M. insulare, M. laetum and M. montanum (37 %, 25 % and 24 % of all iNaturalist records respectively). Most records are from the Western Cape (91 %) and small parts of the Eastern Cape; isolated populations occur in Gauteng and the Northern Cape. We could not confirm the presence M. petiolatum, M. tenuifolium or M. tetrandrum. Field surveys revealed widespread naturalization of M. insulare (46 % of all Research Grade observations in iNaturalist); this species was categorized code D1 in the introduction-naturalization-invasion continuum. Myoporum laetum (C3) and M. montanum (C2) are also widely naturalized but over smaller areas. Naturalized populations comprised predominantly juvenile M. insulare plants occurring in highly disturbed (transformed) habitats. Formal risk analyses for all Myoporum species in South Africa are needed as the basis for re-evaluation of their status in national legislation.

Prochazka, L. S., S. Alcantara, J. G. Rando, T. Vasconcelos, R. C. Pizzardo, and A. Nogueira. 2024. Resource availability and disturbance frequency shape evolution of plant life forms in Neotropical habitats. New Phytologist. https://doi.org/10.1111/nph.19601

Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention.We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches.Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource‐rich environments.Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource‐limited habitat and the other relying on reserves and root resprouting systems in resource‐abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low‐resource and high‐disturbance environments.

Minghetti, E., P. M. Dellapé, M. Maestro, and S. I. Montemayor. 2024. Evaluating the climatic suitability of Engytatus passionarius Minghetti et al. (Heteroptera, Miridae) as a biological control agent of the invasive stinking passion flower Passiflora foetida L. in Australia through ecological niche models. Biological Control 191: 105461. https://doi.org/10.1016/j.biocontrol.2024.105461

Passiflora foetida is a climbing vine, native to the Neotropical Region that is causing major economic and ecological damage in Australia, where it is rapidly spreading. Traditional control options, such as cutting, manual uprooting, and herbicide applications are only effective for local management. Currently, the plant bug Engytatus passionarius is the most promising biological control agent. Specificity tests performed in its native range in Argentina suggest it is highly specific to the plant, and it has not been observed in the field associated with other plants. As climate determines the establishment of insects, knowing if the environmental conditions suit their requirements is key to introducing a species in a region. Also, an overlap between the climatic niches of species is an indicator of similar requirements. To explore the possibilities of a successful establishment of E. passionarius in Australia, ecological niche models (ENM) were built for the plant bug and for the vine and their overlap was measured. The ENM projected to Australia recognized suitable environmental conditions for the establishment of E. passionarius in several regions where P. foetida is present, both for current and future scenarios. Moreover, the niche of the plant bug is almost completely overlapped with that of the vine. All the aforementioned evidence seems to indicate that E. passionarius has a good chance to become an effective biological control agent of P. foetida.

Rautela, K., A. Kumar, S. K. Rana, A. Jugran, and I. D. Bhatt. 2024. Distribution, Chemical Constituents and Biological Properties of Genus Malaxis. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202301830

The genus Malaxis (family Orchidaceae), comprises nearly 183 species available across the globe. The plants of this genus have long been employed in traditional medical practices because of their numerous biological properties, like the treatment of infertility, hemostasis, burning sensation, bleeding diathesis, fever, diarrhea, dysentery, febrifuge, tuberculosis, etc. Various reports highlight their phytochemical composition and biological activities. However, there is a lack of systematic review on the distribution, phytochemistry, and biological properties of this genus. Hence, this study aims to conduct a thorough and critical review of Malaxis species, covering data published from 1965 to 2022 with nearly 90 articles. Also, it examines different bioactive compounds, their chemistry, and pharmacotherapeutics as well as their traditional uses. A total of 191 unique compounds, including the oil constituents were recorded from Malaxis species. The highest active ingredients were obtained from Malaxis acuminata (103) followed by Malaxis muscifera (50) and Malaxis rheedei (33). In conclusion, this review offers an overview of the current state of knowledge on Malaxis species and highlights prospects for future research projects on them. Additionally, it recommends the promotion of domestication studies for rare medicinal orchids like Malaxis and the prompt implementation of conservation measures.

Noori, S., A. Hofmann, D. Rödder, M. Husemann, and H. Rajaei. 2024. A window to the future: effects of climate change on the distribution patterns of Iranian Zygaenidae and their host plants. Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02760-2

Climate change has been suggested as an important human-induced driver for the ongoing sixth mass extinction. As a common response to climate change, and particularly global warming, species move toward higher latitudes or shift uphill. Furthermore, rapid climate change impacts the biotic interactions of species, particularly in the case of Zygaenid moths which exhibit high specialization in both habitat and host plant preferences. Iranian Zygaenidae are relatively well-known and represent a unique fauna with a high endemism rate (46%) in the whole Palearctic; as such they are a good model group to study the impact of climate change on future distributions. In this study, we used species distribution models (SDMs) and ensembles of small models (ESMs) to investigate the impact of climate change on the future distribution of endemic and non-endemic species of zygaenids, as well as their larval host plants. Three different climate scenarios were applied to forecast the probable responses of the species to different climate change intensities. Our results suggest that the central and southern parts of the country will be impacted profoundly by climate change compared to the northern regions. Beyond this, most endemic species will experience an altitudinal shift from their current range, while non-endemic species may move towards higher latitudes. Considering that the regions with higher diversity of zygaenids are limited to mountainous areas, mainly within the Irano-Anatolian biodiversity hotspot, the identification of their local high diversity regions for conservation practices has a high priority.

Issaly, E. A., M. C. Baranzelli, N. Rocamundi, A. M. Ferreiro, L. A. Johnson, A. N. Sérsic, and V. Paiaro. 2023. Too much water under the bridge: unraveling the worldwide invasion of the tree tobacco through genetic and ecological approaches. Biological Invasions. https://doi.org/10.1007/s10530-023-03189-y

Understanding how, and from where, invasive species were introduced is critical for revealing the invasive mechanism, explaining the invasion success, and providing crucial insights for effective management. Here, we combined a phylogeographic approach with ecological niche modeling comparisons to elucidate the introduction mode and source of Nicotiana glauca , a native South American species that is now invasive worldwide. We tested three different scenarios based on the invasion source—random native, restricted native, and bridgehead invasive—considering genetic diversity and climatic niche comparisons among native and invaded areas. We found three genetic lineages geographically and climatically differentiated within the native range. Only one of these genetic groups contained the invasive haplotypes, but showed no climatic niche overlap with any invaded area. Conversely, one invaded area located in western South America, with more genetic diversity than other invaded areas but less than the native range, showed climatic niche overlap with almost all other invaded areas worldwide. These findings indicate that N. glauca first likely invaded the southernmost areas beyond its native range, forming a bridgehead invasive source, from which the species subsequently invaded other regions around the world. Invasiveness would have been fostered by changes in the environmental preferences of the species in the bridgehead area, towards drier, colder and less seasonal climates, becoming the actual source of invasion to areas climatically similar throughout the world. The fine scale resolution analyses combining genetic and climatic approaches within the native range were essential to illuminating the introduction scenario of this invasive species.

Jin, D., Q. Yuan, X. Dai, G. Kozlowski, and Y. Song. 2023. Enhanced precipitation has driven the evolution of subtropical evergreen broad‐leaved forests in eastern China since the early Miocene: Evidence from ring‐cupped oaks. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13022

Subtropical evergreen broad‐leaved forest (EBLF) is the predominant vegetation type in eastern China. However, the majority of the region it covers in eastern China was an arid area during the Paleogene. The temporal history and essential factors involved in the evolution of subtropical EBLFs in eastern China remain enigmatic. Here we report on the niche evolution of Quercus section Cyclobalanopsis, which appeared in south China and Japan during the Eocene and became a dominant component of subtropical EBLFs since the Miocene in eastern Asia, using integrative analysis of occurrences, climate data and a dated phylogeny of 35 species in Cyclobalanopsis. Species within clades Cyclobalanoides, Lamellosa, and Helferiana mainly exist in the Himalaya–Hengduan region, adapting to a plateau climate, while species within the other clades mainly live in eastern China under the control of the East Asian monsoon. Reconstructed history showed that significant divergence of climatic tolerance in Cyclobalanopsis began around 19 million years ago (Ma) in the early Miocene. Simultaneously, disparities in precipitation of wettest/warmest quarter and annual precipitation were markedly enhanced in Cyclobalanopsis, especially in the recent eastern clades. During the Miocene, the marked radiation of Cyclobalanopsis and many other dominant taxa of subtropical EBLFs strongly suggest the rapid formation and expansion of subtropical EBLFs in eastern China. Our research highlights that the intensification of the East Asian monsoon and subsequent occupation of new niches by the ancient clades already present in the south may have jointly promoted the formation of subtropical EBLFs in eastern China since the early Miocene.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

de Deus Vidal, J., C. B. Schmitt, and I. Koch. 2023. Comparative richness patterns of range sizes and life forms of Apocynaceae along forest–savanna transitions in Brazil. Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad047

Brazilian moist forests and savannas are some of the most species-rich biomes in the Neotropics. In the transition zones between these regions, ecotones often accumulate even higher taxonomic diversity. However, whether these ecotonal communities consist of overlapping species widespread from the neighbouring biomes or a specific set of locally adapted species still needs to be clarified. Regional differences in species richness may be influenced by factors such as species' environmental tolerances, life forms, or species’ range sizes. To investigate the species richness found in ecotones, we used the ‘milk-weed’ family (Apocynaceae), which comprises both widespread and narrowly distributed trees, lianas, and shrubs, as a model to evaluate if (i) their observed richness in ecotones is promoted by widespread species or by locally adapted species; (ii) trees, lianas, and shrubs show different richness patterns in savannas, ecotones, and forests; and (iii) species found in ecotones have broader environmental tolerances than other species in the family. We used a taxonomically curated georeferenced dataset to compare the range sizes of 643 species of Apocynaceae from 73 genera listed for Brazil, comprising 298 species with a liana life form and 345 trees, herbs, or shrubs. We recorded 335 predominantly forest species, 56 savanna species, and 152 ecotone species, for which we quantified species richness, areas of occurrence, precipitation, and temperature ranges and tested for differences in range sizes and environmental tolerances between habits and ecoregions. Our results indicate that (i) Apocynaceae species occurring in ecotones have wider geographical ranges than species not occurring in ecotones; (ii) lianas showed higher area-weighted richness in ecotones than other life forms; and (iii) species found in ecotones had broader environmental tolerances than species restricted to moist forests or savannas. These results indicate that the species richness found in ecotones between savannas and moist forests in Brazil is not necessarily a consequence of higher endemism and local adaptation but may also be a result of overlapping ranges of widespread species typically associated with neighbouring biomes. Together, our findings add to our understanding of ecotones and biomes as continuous, gradual biogeographical transitions instead of sharply defined ecological units.