Ciencia habilitada por datos de especímenes

Kovalchuk, I., Pellino, M., Rigault, P., van Velzen, R., Ebersbach, J., R. Ashnest, J., … Sharbel, T. F. (2020). The Genomics of Cannabis and Its Close Relatives. Annual Review of Plant Biology, 71(1). doi:10.1146/annurev-arplant-081519-040203 https://doi.org/10.1146/annurev-arplant-081519-040203

Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social int…

Mienna, I. M., Speed, J. D. M., Bendiksby, M., Thornhill, A. H., Mishler, B. D., & Martin, M. D. (2019). Differential patterns of floristic phylogenetic diversity across a post‐glacial landscape. Journal of Biogeography. doi:10.1111/jbi.13789 https://doi.org/10.1111/jbi.13789

Aim: In this study, we explored spatial patterns of phylogenetic diversity (PD) and endemism in the flora of Norway and tested hypothesized post‐glacial environmental drivers of PD, including temperature, precipitation, edaphic factors and time since glacial retreat. Location: Norway. Taxon: Vascula…

Folk, R. A., Stubbs, R. L., Mort, M. E., Cellinese, N., Allen, J. M., Soltis, P. S., … Guralnick, R. P. (2019). Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences, 116(22), 10874–10882. doi:10.1073/pnas.1817999116 https://doi.org/10.1073/pnas.1817999116

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and…

Schubert, M., Groenvold, L., Sandve, S. R., Hvidsten, T. R., & Fjellheim, S. (2019). Evolution of cold acclimation and its role in niche transition in the temperate grass subfamily Pooideae. Plant Physiology, pp.01448.2018. doi:10.1104/pp.18.01448 https://doi.org/10.1104/pp.18.01448

The grass subfamily Pooideae dominates the grass floras in cold temperate regions, and has evolved complex physiological adaptations to cope with extreme environmental conditions like frost, winter and seasonality. One such adaptation is cold acclimation, wherein plants increase their frost toleranc…