Ciencia habilitada por datos de especímenes

Groh, S. S., P. Upchurch, J. J. Day, and P. M. Barrett. 2023. The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability. Royal Society Open Science 10.

Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages.

Fell, H. G., M. Jones, S. Atkinson, N. C. Stenseth, and A. C. Algar. 2023. The role of reservoir species in mediating plague’s dynamic response to climate. Royal Society Open Science 10.

The distribution and transmission of Yersinia pestis , the bacterial agent of plague, responds dynamically to climate, both within wildlife reservoirs and human populations. The exact mechanisms mediating plague's response to climate are still poorly understood, particularly across large environmentally heterogeneous regions encompassing several reservoir species. A heterogeneous response to precipitation was observed in plague intensity across northern and southern China during the Third Pandemic. This has been attributed to the response of reservoir species in each region. We use environmental niche modelling and hindcasting methods to test the response of a broad range of reservoir species to precipitation. We find little support for the hypothesis that the response of reservoir species to precipitation mediated the impact of precipitation on plague intensity. We instead observed that precipitation variables were of limited importance in defining species niches and rarely showed the expected response to precipitation across northern and southern China. These findings do not suggest that precipitation–reservoir species dynamics never influence plague intensity but that instead, the response of reservoir species to precipitation across a single biome cannot be assumed and that limited numbers of reservoir species may have a disproportional impact upon plague intensity.

Ramiro-Sánchez, B., A. Martin, and B. Leroy. 2023. The epitome of data paucity: Deep-sea habitats of the Southern Indian Ocean. Biological Conservation 283: 110096.

Vulnerable marine ecosystems (VMEs) are protected from bottom-fishing impacts in international waters by UN resolutions through Regional Fishery Management Organizations. VMEs include deep-sea benthic taxa whose life-history traits make them vulnerable to disturbance. Conservation measures for VMEs require regulatory frameworks informed by biodiversity maps. Here we evaluate biogeographic patterns of VME biodiversity of the Southern Indian Ocean to understand conservation avenues for the Southern Indian Ocean Fisheries Agreement (SIOFA) management organization. We synthesised knowledge on the distribution of deep-sea benthic taxa and explored the quality and quantity of available data. Next, we explored how taxa are structured into bioregions using biogeographical networks. We found astounding Wallacean and Linnaean shortfalls within SIOFA's area, which is virtually devoid of distributional data. Across the entire area, results suggest that only 48 % of the expected deep-sea taxa has been sampled at most, and most sampled cells are inadequately sampled. Yet, our bioregionalization analysis identified multiple bioregions, some only observed within SIOFA's area. Whilst the Wallacean and Linnean shortfalls are so important for VMEs that they severely impede to make adequate maps for conservation planning, results suggest that SIOFA hosts a unique faunal composition that must be safeguarded. Predictive approaches to compensate for these shortfalls exist but will likely be insufficient and uncertain. Within SIOFA's area, there is no satisfying solution to cope with the data shortfalls. Yet, biodiversity maps are a global responsibility. This study makes a call to invest in biodiversity inventories in this region to promote informed conservation decisions.

Ramírez Icaza, O., A. H. Díaz de la Vega-Pérez, and M. Sánchez Luna. 2023. Indotyphlops braminus (SQUAMATA: TYPHLOPIDAE). Revista Latinoamericana de Herpetología 6: 50–51.

(no abstract available)

Ecke, F., B. A. Han, B. Hörnfeldt, H. Khalil, M. Magnusson, N. J. Singh, and R. S. Ostfeld. 2022. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nature Communications 13.

Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world. Many rodent species are known as hosts of zoonotic pathogens, but the ecological conditions that trigger spillover are not well-understood. Here, the authors show that population fluctuations and association with human-dominated habitats explain the zoonotic reservoir status of rodents globally.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation.

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Lal, M. M., K. T. Brown, P. Chand, and T. D. Pickering. 2022. An assessment of the aquaculture potential of indigenous freshwater food fish of Fiji, Papua New Guinea, Vanuatu, Solomon Islands, Samoa and Tonga as alternatives to farming of tilapia. Reviews in Aquaculture.

An important driver behind introductions for aquaculture of alien fish species into Pacific Island Countries and Territories (PICTs) is a lack of knowledge about domestication suitability and specific culture requirements of indigenous taxa. Introductions may be appropriate in some circumstances, but in other circumstances, the associated risks may outweigh the benefits, so greater understanding of indigenous species' aquaculture potential is important. This review summarises literature for indigenous freshwater food fish species from Papua New Guinea, Fiji, Vanuatu, the Solomon Islands, Samoa and Tonga, and evaluates their aquaculture potential for food security and/or small‐scale livelihoods. A species selection criteria incorporating economic, social, biological and environmental spheres was used to score 62 candidate species. Tilapia (Oreochromis mossambicus and O. niloticus) now established in PICTs were evaluated for comparison. Results show that 13 species belonging to the families Mugilidae (Mullets), Terapontidae (Grunters), Kuhliidae (Flagtails) and Scatophagidae (Scats) have the highest culture potential according to selection criteria. These feed at a relatively low trophic level (are herbivores/detritivores), have comparatively fast growth rates and overall possess characteristics most amenable for small‐scale, inland aquaculture. The four top‐ranked candidates are all mountain mullets Cestraeus spp., followed by Nile tilapia (Oreochromis niloticus). Lower ranked candidates include three other mullets (Planiliza melinoptera, P. subviridis and Mugil cephalus) and rock flagtail Kuhlia rupestris. Importantly, many species remain data deficient in aspects of their reproductive biology or culture performance. Species profiles and ranked priority species by country are provided with logistical, technological and environmental assessments of country capacities to culture each species.

Oliveira-Dalland, L. G., L. R. V. Alencar, L. R. Tambosi, P. A. Carrasco, R. M. Rautsaw, J. Sigala-Rodriguez, G. Scrocchi, and M. Martins. 2022. Conservation gaps for Neotropical vipers: Mismatches between protected areas, species richness and evolutionary distinctiveness. Biological Conservation 275: 109750.

The continuous decline in biodiversity despite global efforts to create new protected areas calls into question the effectiveness of these areas in conserving biodiversity. Numerous habitats are absent from the global protected area network, and certain taxonomic groups are not being included in conservation planning. Here, we analyzed the level of protection that the current protected area system provides to viper species in the Neotropical region through a conservation gap analysis. We used distribution size and degree of threat to set species-specific conservation goals for 123 viper species in the form of minimum percentage of their distribution that should be covered by protected areas, and assessed the level of protection provided for each species by overlapping their distribution with protected areas of strict protection. Furthermore, using species richness and evolutionary distinctiveness as priority indicators, we conducted a spatial association analysis to detect areas of special concern. We found that most viper species have <1/4 of their distribution covered by protected areas, including 22 threatened species. Also, the large majority of cells containing high levels of species richness were significantly absent from protected areas, while evolutionary distinctiveness was particularly unprotected in regions with relatively low species richness, like northern Mexico and the Argentinian dry Chaco. Our results provide further evidence that vipers are largely being excluded from conservation planning, leaving them exposed to serious threats that can lead to population decline and ultimately extinction.

Rautsaw, R. M., G. Jiménez-Velázquez, E. P. Hofmann, L. R. V. Alencar, C. I. Grünwald, M. Martins, P. Carrasco, et al. 2022. VenomMaps: Updated species distribution maps and models for New World pitvipers (Viperidae: Crotalinae). Scientific Data 9.

Beyond providing critical information to biologists, species distributions are useful for naturalists, curious citizens, and applied disciplines including conservation planning and medical intervention. Venomous snakes are one group that highlight the importance of having accurate information given their cosmopolitan distribution and medical significance. Envenomation by snakebite is considered a neglected tropical disease by the World Health Organization and venomous snake distributions are used to assess vulnerability to snakebite based on species occurrence and antivenom/healthcare accessibility. However, recent studies highlighted the need for updated fine-scale distributions of venomous snakes. Pitvipers (Viperidae: Crotalinae) are responsible for >98% of snakebites in the New World. Therefore, to begin to address the need for updated fine-scale distributions, we created VenomMaps, a database and web application containing updated distribution maps and species distribution models for all species of New World pitvipers. With these distributions, biologists can better understand the biogeography and conservation status of this group, researchers can better assess vulnerability to snakebite, and medical professionals can easily discern species found in their area. Measurement(s) Species Distributions Technology Type(s) Geographic Information System • Species Distribution Model (MaxEnt/kuenm) Factor Type(s) Occurrence Records • Environmental Data Sample Characteristic - Organism Crotalinae Sample Characteristic - Location North America • South America

Sudo, K., S. Maehara, M. Nakaoka, and M. Fujii. 2022. Predicting Future Shifts in the Distribution of Tropicalization Indicator Fish that Affect Coastal Ecosystem Services of Japan. Frontiers in Built Environment 7.

Tropicalization characterized by an increase in marine species originating from the tropical waters affects human society in various ways. An increase in toxic harmful species negatively affects fisheries and leisure use, and an increase in herbivorous fish affects fisheries and carbon sink capacity…