Ciencia habilitada por datos de especímenes

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Deb, J. C., Forbes, G., & MacLean, D. A. (2020). Modelling the spatial distribution of selected North American woodland mammals under future climate scenarios. Mammal Review. doi:10.1111/mam.12210 https://doi.org/10.1111/mam.12210

North America has a diverse array of mammalian species. Model projections indicate significant variations in future climate conditions of North America, and the habitats of woodland mammals of this continent may be particularly sensitive to changes in climate.We report on the potential spatial distr…

Arfianti, T., & Costello, M. (2020). Global biogeography of marine amphipod crustaceans: latitude, regionalization, and beta diversity. Marine Ecology Progress Series, 638, 83–94. doi:10.3354/meps13272 https://doi.org/10.3354/meps13272

Studying the biogeography of amphipod crustaceans is of interest because they play an important role at lower trophic levels in ecosystems. Because they lack a planktonic larval stage, it has been hypothesized that marine benthic amphipod crustaceans may have short dispersal distances, high endemici…

Rotenberry, J. T., & Balasubramaniam, P. (2020). Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography. doi:10.1111/ecog.04871 https://doi.org/10.1111/ecog.04871

Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…

Vollering, J., Halvorsen, R., Auestad, I., & Rydgren, K. (2019). Bunching up the background betters bias in species distribution models. Ecography. doi:10.1111/ecog.04503 https://doi.org/10.1111/ecog.04503

Sets of presence records used to model species’ distributions typically consist of observations collected opportunistically rather than systematically. As a result, sampling probability is geographically uneven, which may confound the model’s characterization of the species’ distribution. Modelers f…

Fletcher, T. L., Warden, L., Sinninghe Damsté, J. S., Brown, K. J., Rybczynski, N., Gosse, J. C., & Ballantyne, A. P. (2019). Evidence for fire in the Pliocene Arctic in response to amplified temperature. Climate of the Past, 15(3), 1063–1081. doi:10.5194/cp-15-1063-2019 https://doi.org/10.5194/cp-15-1063-2019

The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intr…

Panchen, Z. A., Doubt, J., Kharouba, H. M., & Johnston, M. O. (2019). Patterns and biases in an Arctic herbarium specimen collection: Implications for phenological research. Applications in Plant Sciences, 7(3), e01229. doi:10.1002/aps3.1229 https://doi.org/10.1002/aps3.1229

Premise of the Study: Herbarium specimens are increasingly used in phenological studies. However, natural history collections can have biases that influence the analysis of phenological events. Arctic environments, where remoteness and cold climate govern collection logistics, may give rise to uniqu…

Karger, D. N., Kessler, M., Conrad, O., Weigelt, P., Kreft, H., König, C., & Zimmermann, N. E. (2019). Why tree lines are lower on islands-Climatic and biogeographic effects hold the answer. Global Ecology and Biogeography. doi:10.1111/geb.12897 https://doi.org/10.1111/geb.12897

Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…