Ciencia habilitada por datos de especímenes

Favre, A., Paule, J., & Ebersbach, J. (2021). Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European Alpine System. Alpine Botany. doi:10.1007/s00035-021-00267-6 https://doi.org/10.1007/s00035-021-00267-6

Mountains are reservoirs for a tremendous biodiversity which was fostered by a suite of factors acting in concert throughout evolutionary times. These factors can be climatic, geological, or biotic, but the way they combine through time to generate diversity remains unknown. Here, we investigate the…

Mairal, M., Chown, S. L., Shaw, J., Chala, D., Chau, J. H., Hui, C., … Le Roux, J. J. (2021). Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub‐Antarctic. Molecular Ecology. doi:10.1111/mec.16045 https://doi.org/10.1111/mec.16045

The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differen…

De Oliveira, M. H. V., Torke, B. M., & Almeida, T. E. (2021). An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia. doi:10.1007/s12228-021-09668-7 https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…

Jin, W.-T., Gernandt, D. S., Wehenkel, C., Xia, X.-M., Wei, X.-X., & Wang, X.-Q. (2021). Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences, 118(20), e2022302118. doi:10.1073/pnas.2022302118 https://doi.org/10.1073/pnas.2022302118

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest…

Bontrager, M., Usui, T., Lee‐Yaw, J. A., Anstett, D. N., Branch, H. A., Hargreaves, A. L., … Angert, A. L. (2021). Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution. doi:10.1111/evo.14231 https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Inman, R., Franklin, J., Esque, T., & Nussear, K. (2021). Comparing sample bias correction methods for species distribution modeling using virtual species. Ecosphere, 12(3). doi:10.1002/ecs2.3422 https://doi.org/10.1002/ecs2.3422

A key assumption in species distribution modeling (SDM) with presence‐background (PB) methods is that sampling of occurrence localities is unbiased and that any sampling bias is proportional to the background distribution of environmental covariates. This assumption is rarely met when SDM practition…

Briscoe Runquist, R. D., Lake, T. A., & Moeller, D. A. (2021). Improving predictions of range expansion for invasive species using joint species distribution models and surrogate co‐occurring species. Journal of Biogeography. doi:10.1111/jbi.14105 https://doi.org/10.1111/jbi.14105

Aims: Species distribution models (SDMs) are often used to forecast potential distributions of important invasive or rare species. However, situations where models could be the most valuable ecologically or economically, such as for predicting invasion risk, often pose the greatest challenges to SDM…

Saldaña‐López, A., Vilà, M., Lloret, F., Manuel Herrera, J., & González‐Moreno, P. (2021). Assembly of species’ climatic niches of coastal communities does not shift after invasion. Journal of Vegetation Science, 32(2). doi:10.1111/jvs.12989 https://doi.org/10.1111/jvs.12989

Question: Do invasions by invasive plant species with contrasting trait profiles (Arctotheca calendula, Carpobrotus spp., Conyza bonariensis, and Opuntia dillenii) change the climatic niche of coastal plant communities? Location: Atlantic coastal habitats in Huelva (Spain). Methods: We identifi…

Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., … Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-020-00460-1 https://doi.org/10.1007/s12549-020-00460-1

Marked by the expansion of ice sheets in the high latitudes, the intensification of Northern Hemisphere glaciation across the Plio/Pleistocene transition at ~ 2.7 Ma represents a critical interval of late Neogene climate evolution. To date, the characteristics of climate change in North America duri…

Deanna, R., Wilf, P., & Gandolfo, M. A. (2020). New physaloid fruit‐fossil species from early Eocene South America. American Journal of Botany, 107(12), 1749–1762. doi:10.1002/ajb2.1565 https://doi.org/10.1002/ajb2.1565

Premise: Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil…