Ciencia habilitada por datos de especímenes
Saunders, T. C., I. Larridon, W. J. Baker, R. L. Barrett, F. Forest, E. Françoso, O. Maurin, et al. 2024. Tangled webs and spider‐flowers: Phylogenomics, biogeography, and seed morphology inform the evolutionary history of Cleomaceae. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16399
Premise Cleomaceae is an important model clade for studies of evolutionary processes including genome evolution, floral form diversification, and photosynthetic pathway evolution. Diversification and divergence patterns in Cleomaceae remain tangled as research has been restricted by its worldwide distribution, limited genetic sampling and species coverage, and a lack of definitive fossil calibration points.MethodsWe used target sequence capture and the Angiosperms353 probe set to perform a phylogenetic study of Cleomaceae. We estimated divergence times and biogeographic analyses to explore the origin and diversification of the family. Seed morphology across extant taxa was documented with multifocal image‐stacking techniques and morphological characters were extracted, analyzed, and compared to fossil records.ResultsWe recovered a well‐supported and resolved phylogenetic tree of Cleomaceae generic relationships that includes 236 (~86%) species. We identified 11 principal clades and confidently placed Cleomella as sister to the rest of the family. Our analyses suggested that Cleomaceae and Brassicaceae diverged ~56 mya, and Cleomaceae began to diversify ~53 mya in the Palearctic and Africa. Multiple transatlantic disjunct distributions were identified. Seeds were imaged from 218 (~80%) species in the family and compared to all known fossil species.ConclusionsOur results represent the most comprehensive phylogenetic study of Cleomaceae to date. We identified transatlantic disjunctions and proposed explanations for these patterns, most likely either long‐distance dispersals or contractions in latitudinal distributions caused by climate change over geological timescales. We found that seed morphology varied considerably but mostly mirrored generic relationships.
Liu, Y., H. Wu, Z. Zhang, W. Wang, G. Han, C. Zhang, X. Lyu, et al. 2024. Traditional Use, Phytochemistry, Pharmacology, Toxicology and Clinical Applications of Persicae Semen: A Review. Chinese Journal of Integrative Medicine. https://doi.org/10.1007/s11655-024-3815-4
Persicae Semen (Taoren), the seed of mature peaches consumed as both food and medicine, is native to the temperate regions of China, distributed in the provinces of North and East China, and currently cultivated worldwide. The primary components of Persicae Semen include volatile oil, protein, amino acids, amygdalin, and prunasin, all of which have pharmacological properties, such as anti-inflammatory, antioxidant, and immune regulatory effects, and are clinically used in the treatment of gynecological, cardiovascular, cerebrovascular, orthopedic, and digestive system diseases. This review provides a comprehensive perspective on the resource status, ethnopharmacology, phytochemistry, pharmacology, and toxicology, as well as the trend of Persicae Semen patent, global distribution, and clinical applications. This review will help facilitate the development and utilization of Persicae Semen in clinical settings.
Hodgson, R. J., C. Liddicoat, C. Cando-Dumancela, N. W. Fickling, S. D. Peddle, S. Ramesh, and M. F. Breed. 2024. Increasing aridity strengthens the core bacterial rhizosphere associations in the pan-palaeotropical C4 grass, Themeda triandra. Applied Soil Ecology 201: 105514. https://doi.org/10.1016/j.apsoil.2024.105514
Understanding belowground plant-microbial interactions is fundamental to predicting how plant species respond to climate change, particularly in global drylands. However, these interactions are poorly understood, especially for keystone grass species like the pan-palaeotropical Themeda triandra. Here, we used 16S rRNA amplicon sequencing to characterise microbiota in rhizospheres and bulk soils associated with T. triandra. We applied this method to eight native sites across a 3-fold aridity gradient (aridity index range = 0.318 to 0.903 = 87 % global aridity distribution) in southern Australia. By examining the relative contributions of climatic, edaphic, ecological, and host specific phenotypic traits, we identified the ecological drivers of core T. triandra-associated microbiota. We show that aridity had the strongest effect on shaping these core microbiotas, and report that a greater proportion of bacterial taxa that were from the core rhizosphere microbiomes were also differentially abundant in more arid T. triandra regions. These results suggest that T. triandra naturally growing in soils under more arid conditions have greater reliance on rhizosphere core taxa than plants growing under wetter conditions. Our study underscores the likely importance of targeted recruitment of bacteria into the rhizosphere by grassland keystone species, such as T. triandra, when growing in arid conditions. This bacterial soil recruitment is expected to become even more important under climate change.
M.P., K., S. S.R., M. V.F.O., and S. Nampy. 2024. Revision of Utricularia section Nigrescentes (Lentibulariaceae) in India and re-instating Utricularia roseopurpurea based on morphological-molecular approach. Rheedea 34: 20–39. https://doi.org/10.22244/rheedea.2024.34.01.02
Utricularia L. section Nigrescentes (Oliv.) Komiya (Lentibulariaceae), distributed in tropical Africa, Madagascar, Asia to Japan and Australia includes four species, U. bracteata R.D.Good, U. caerulea L., U. roseopurpurea Stapf ex Gamble and U. warburgii K.I.Goebel. Utricularia caerulea and U. roseopurpurea occur in India, and the latter species has long been treated as a synonym of the former. The identity of U. roseopurpurea has been confirmed using morphological, micromorphological, and molecular data and the species has been re-established. Multiple accessions of the species included in the phylogenetic study formed a sister clade to U. caerulea with strong branch support. The section Nigrescentes in India is revisited, and the distribution of both species is defined based on extensive field and herbarium surveys. The affinities between the two species are discussed. Full descriptions, notes on habitat requirements, nomenclature, assessment of the conservation status and photographs are provided for both species.
SULTON, M. N., D. M. AURINA, F. MUHAMMAD, F. P. A. FADZILAH, Z. HANUN, M. INDRAWAN, S. BUDIHARTA, et al. 2024. Predicting the current and future distributions of Pinus merkusii in Southeast Asia under climate change. Biodiversitas Journal of Biological Diversity 25. https://doi.org/10.13057/biodiv/d250328
Pinus merkusii Jungh. Et de Vriese is a native pine species of Southeast Asia with primary distribution in Indonesia, especially in the mountainous areas of northern Sumatra. The P. merkusii has an important role in the forest ecosystem including maintaining ecosystem stability, reducing soil erosion, and providing habitat for various types of flora and fauna. Climate change is expected to affect the growth, development and distribution of plants, so this study aims to predicting the current dan future distribution of P. merkusii in Southeast Asia under climate change. We used Maxent and Geographic Information System (GIS), which incorporated bioclimatic, edaphic, and UVB radiation variables, to predict the suitable areas of P. merkusii under current and future climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) and three time periods (2030, 2050, and 2080). Our findings indicate that compared to current, there will be an increase of suitable areas for P. merkusii in 2030 across all climate scenarios with RCPs 2.6, 4.5, 6.0, and 8.5 represent 9.53%, 9.66%, 9.73%, and 9.91% of Southeast Asia terrestrial area, respectively. In 2050, such increase will continue under all climate scenarios with RCP 4.5 has the largest proportion of suitable area (10.39%). However, in 2080, the suitable areas are likely to reduce compared with 2050 with RCPs 2.6, 4.5, 6.0, and 8.5 have a percentage of 9.21%, 9.69%, 10.29%, and 9.81%, respectively. Our predictions showed that there will be a geographical shift of suitable area of P. merkusii into higher elevation and latitude, migrating east and northeast. Our findings about the potential future distribution of P. merkusii might be used as a reference for cultivation according to predicted suitable areas in the future.
Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847
Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.
Zhang, R., L.-L. Huang, S.-F. Li, T. Su, and A. A. Oskolski. 2024. Fossil woods of Cryptocarya (Lauraceae) from the middle Miocene of Southwest China. Review of Palaeobotany and Palynology 324: 105096. https://doi.org/10.1016/j.revpalbo.2024.105096
The structure of lauraceous fossil woods from the middle Miocene deposits of the Dajie Formation of Ninger County, Yunnan Province, China has been studied. The occurrence of wide (> 7 seriate) rays in combination with the presence of scalariform perforation plates, the oil/mucilage cells in rays, axial parenchyma and among fibers as well as some other traits allow us to attribute the fossil woods to the extant genus Cryptocarya. We describe the woods as a new species C. latiradiata R. Zhang, T. Su & A. A. Oskolski sp. nov. (Lauraceae). This is an important improvement in the fossil record of Cryptocarya showing that this genus was widely ranged across southern China in the middle Miocene. The occurrence of the fossil woods of such termophyllous genus as Cryptocarya in the Dajie Formation suggests that this middle Miocene climate in southern Yunnan was frostless. This result is consistent with other evidence for the warm environment caused by complex topographic structures in this region since the middle Miocene linked to the successive uplift of the Tibetan Plateau and the Ailao Mountains. Particularly, it suggests that the Ailao Mountains in the middle Miocene were high enough to weaken the influence of the Asian Winter Monsoon on the territory of Yunnan.
Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034
Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.
Li, D., X. Wang, K. Jiang, R. An, Y. Li, and D. Liu. 2024. The impact of climate change and the conservation of the keystone Asian honeybee using niche models and systematic prioritization C. Bahlai [ed.],. Journal of Economic Entomology. https://doi.org/10.1093/jee/toae018
Global warming has seriously disturbed the Earth’s ecosystems, and in this context, Asian honeybee (Apis cerana) has experienced a dramatic decline in recent decades. Here, we examined both direct and indirect effects of climate change on A. cerana through ecological niche modeling of A. cerana, and its disease pathogens (i.e., Chinese sacbrood virus and Melissococcus plutonius) and enemies (i.e., Galleria mellonella and Vespa mandarinia). Ecological niche modeling predicts that climate change will increase the potential suitability of A. cerana, but it will also cause some of the original habitat areas to become unsuitable. Outbreak risks of Chinese sacbrood disease and European Foulbrood will increase dramatically, while those of G. mellonella and V. mandarinia will decrease only slightly. Thus, climate change will produce an unfavorable situation for even maintaining some A. cerana populations in China in the future. Genetic structure analyses showed that the A. cerana population from Hainan Island had significant genetic differentiation from that of the mainland, and there was almost no gene flow between the 2, suggesting that urgent measures are needed to protect the unique genetic resources there. Through taking an integrated planning technique with the Marxan approach, we optimized conservation planning, and identified potential nature reserves (mainly in western Sichuan and southern Tibet) for conservation of A. cerana populations. Our results can provide insights into the potential impact of climate change on A. cerana, and will help to promote the conservation of the keystone honeybee in China and the long-term sustainability of its ecosystem services.
Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.