Ciencia habilitada por datos de especímenes
Rotenberry, J. T., and P. Balasubramaniam. 2020. Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence. Ecography 43: 897–913. https://doi.org/10.1111/ecog.04871
Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: poi…
Kovalchuk, I., M. Pellino, P. Rigault, R. van Velzen, J. Ebersbach, J. R. Ashnest, M. Mau, et al. 2020. The Genomics ofCannabisand Its Close Relatives. Annual Review of Plant Biology 71: 713–739. https://doi.org/10.1146/annurev-arplant-081519-040203
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social int…
Li, M., J. He, Z. Zhao, R. Lyu, M. Yao, J. Cheng, and L. Xie. 2020. Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ 8: e8729. https://doi.org/10.7717/peerj.8729
Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…
Ringelberg, J. J., N. E. Zimmermann, A. Weeks, M. Lavin, and C. E. Hughes. 2020. Biomes as evolutionary arenas: Convergence and conservatism in the trans‐continental succulent biome A. Moles [ed.],. Global Ecology and Biogeography 29: 1100–1113. https://doi.org/10.1111/geb.13089
Aim: Historically, biomes have been defined based on their structurally and functionally similar vegetation, but there is debate about whether these similarities are superficial, and about how biomes are defined and mapped. We propose that combined assessment of evolutionary convergence of plant fun…
Thang, T. H., A. M. Thu, and J. Chen. 2020. Tree species of tropical and temperate lineages in a tropical Asian montane forest show different range dynamics in response to climate change. Global Ecology and Conservation 22: e00973. https://doi.org/10.1016/j.gecco.2020.e00973
Shifts in species distributions have been documented in response to recent climatic change, with most species moving poleward and to higher altitude. However, different taxa may respond to climatic change differently. The Climatic Variability Hypothesis (CVH) suggests that taxa originating from envi…
Léveillé-Bourret, É., B.-H. Chen, M.-È. Garon-Labrecque, B. A. Ford, and J. R. Starr. 2020. RAD sequencing resolves the phylogeny, taxonomy and biogeography of Trichophoreae despite a recent rapid radiation (Cyperaceae). Molecular Phylogenetics and Evolution 145: 106727. https://doi.org/10.1016/j.ympev.2019.106727
Trichophoreae is a nearly cosmopolitan Cyperaceae tribe that contains ∼17 species displaying striking variation in size, inflorescence complexity, and perianth morphology. Although morphologically distinct, the status of its three genera (Cypringlea, Oreobolopsis and Trichophorum) are controversial …
Khoury, C. K., D. Carver, D. W. Barchenger, G. E. Barboza, M. Zonneveld, R. Jarret, L. Bohs, et al. 2019. Modelled distributions and conservation status of the wild relatives of chile peppers ( Capsicum L.) J. Lambrinos [ed.],. Diversity and Distributions 26: 209–225. https://doi.org/10.1111/ddi.13008
Aim: To fill critical knowledge gaps with regard to the distributions and conservation status of the wild relatives of chile peppers (Capsicum L.). Location: The study covered the potential native ranges of currently recognized wild Capsicum taxa, throughout the Americas. Methods: We modelled the po…
Verwijs, J. I. M., R. W. Bouman, and P. C. van Welzen. 2019. A taxonomic revision of Phyllanthus subgenus Macraea (Phyllanthaceae). Blumea - Biodiversity, Evolution and Biogeography of Plants 64: 231–252. https://doi.org/10.3767/blumea.2019.64.03.05
Within the morphologically diverse pantropical genus Phyllanthus, many subgenera, sections and subsections are recognized. While most taxonomic revisions often focus on local floras, closely related and often resembling species are not always treated in full. Subgenus Macraea is here revised for the…
Stull, G. W., B. H. Tiffney, S. R. Manchester, C. D. Rio, and S. L. Wing. 2020. Endocarps of Pyrenacantha (Icacinaceae) from the Early Oligocene of Egypt. International Journal of Plant Sciences 181: 432–442. https://doi.org/10.1086/706854
The fossil record of Pyrenacantha (Phytocreneae tribe, Icacinaceae) includes well-documented species from the Paleogene of North and South America but, to date, no fossils have been described from its present geographic range, the Old World tropics. We document endocarp remains from the early Oligoc…
Marconi, L., and L. Armengot. 2020. Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment 287: 106664. https://doi.org/10.1016/j.agee.2019.106664
In addition to their potential against deforestation and climate change, agroforestry systems may have a relevant role in biodiversity conservation. In this sense, not only species richness per se, but also community composition, including the distribution range of the species, should be considered.…