Ciencia habilitada por datos de especímenes

Hughes, A. C., Orr, M. C., Ma, K., Costello, M. J., Waller, J., Provoost, P., … Qiao, H. (2021). Sampling biases shape our view of the natural world. Ecography. doi:10.1111/ecog.05926 https://doi.org/10.1111/ecog.05926

Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies.…

Parker, S. D., Perkin, J. S., Bean, M. G., Lutz‐Carrillo, D., & Acre, M. R. (2021). Temporal distribution modelling reveals upstream habitat drying and downstream non‐native introgression are squeezing out an imperiled headwater fish. Diversity and Distributions. doi:10.1111/ddi.13214 https://doi.org/10.1111/ddi.13214

Aim: To review the conservation status of Headwater catfish Ictalurus lupus (Girard,1859) in the United States, including quantifying environmental correlates with range contraction and hybridization and introgression with Channel catfish Ictalurus punctatus (Rafinesque, 1818) to inform conservatio…

Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M., & Cheung, W. W. L. (2018). Global estimation of areas with suitable environmental conditions for mariculture species. PLOS ONE, 13(1), e0191086. doi:10.1371/journal.pone.0191086 https://doi.org/10.1371/journal.pone.0191086

Aquaculture has grown rapidly over the last three decades expanding at an average annual growth rate of 5.8% (2005–2014), down from 8.8% achieved between 1980 and 2010. The sector now produces 44% of total food fish production. Increasing demand and consumption from a growing global population are d…

Rautsaw, R. M., Schramer, T. D., Acuña, R., Arick, L. N., DiMeo, M., Mercier, K. P., … Parkinson, C. L. (2020). Genomic Adaptations to Salinity Resist Gene Flow in the Evolution of Floridian Watersnakes. Molecular Biology and Evolution. doi:10.1093/molbev/msaa266 https://doi.org/10.1093/molbev/msaa266

The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differen…

Zizka, A., Antunes Carvalho, F., Calvente, A., Rocio Baez-Lizarazo, M., Cabral, A., Coelho, J. F. R., … Antonelli, A. (2020). No one-size-fits-all solution to clean GBIF. PeerJ, 8, e9916. doi:10.7717/peerj.9916 https://doi.org/10.7717/peerj.9916

Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, th…

Oegelund Nielsen, R., da Silva, R., Juergens, J., Staerk, J., Lindholm Sørensen, L., Jackson, J., … Conde, D. A. (2020). Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data in Brief, 33, 106337. doi:10.1016/j.dib.2020.106337 https://doi.org/10.1016/j.dib.2020.106337

#N/A

Li, X., Li, B., Wang, G., Zhan, X., & Holyoak, M. (2020). Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX, 7, 101067. doi:10.1016/j.mex.2020.101067 https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…

Chollett, I., & Robertson, D. R. (2020). Comparing biodiversity databases: Greater Caribbean reef fishes as a case study. Fish and Fisheries. doi:10.1111/faf.12497 https://doi.org/10.1111/faf.12497

There is a widespread need for reliable biodiversity databases for science and conservation. Among the many public databases available, we lack guidance as to how their data quality varies. Here, we compare species distribution data for a well known regional reef fish fauna extracted from five globa…

Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., & Cheung, W. W. L. (2020). Projecting global mariculture diversity under climate change. Global Change Biology. doi:10.1111/gcb.14974 https://doi.org/10.1111/gcb.14974

Previous studies have focused on changes in the geographical distribution of terrestrial biomes and species targeted by marine capture fisheries due to climate change impacts. Given mariculture’s substantial contribution to global seafood production and its growing significance in recent decades, it…

Smith, J. A., Benson, A. L., Chen, Y., Yamada, S. A., & Mims, M. C. (2020). The power, potential, and pitfalls of open access biodiversity data in range size assessments: Lessons from the fishes. Ecological Indicators, 110, 105896. doi:10.1016/j.ecolind.2019.105896 https://doi.org/10.1016/j.ecolind.2019.105896

Geographic rarity is a driver of a species’ intrinsic risk of extinction. It encompasses multiple key components including range size, which is one of the most commonly measured estimates of geographic rarity. Range size estimates are often used to prioritize conservation efforts when there are mult…