Ciencia habilitada por datos de especímenes

Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752

AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.

Hodgson, R. J., C. Liddicoat, C. Cando-Dumancela, N. W. Fickling, S. D. Peddle, S. Ramesh, and M. F. Breed. 2024. Increasing aridity strengthens the core bacterial rhizosphere associations in the pan-palaeotropical C4 grass, Themeda triandra. Applied Soil Ecology 201: 105514. https://doi.org/10.1016/j.apsoil.2024.105514

Understanding belowground plant-microbial interactions is fundamental to predicting how plant species respond to climate change, particularly in global drylands. However, these interactions are poorly understood, especially for keystone grass species like the pan-palaeotropical Themeda triandra. Here, we used 16S rRNA amplicon sequencing to characterise microbiota in rhizospheres and bulk soils associated with T. triandra. We applied this method to eight native sites across a 3-fold aridity gradient (aridity index range = 0.318 to 0.903 = 87 % global aridity distribution) in southern Australia. By examining the relative contributions of climatic, edaphic, ecological, and host specific phenotypic traits, we identified the ecological drivers of core T. triandra-associated microbiota. We show that aridity had the strongest effect on shaping these core microbiotas, and report that a greater proportion of bacterial taxa that were from the core rhizosphere microbiomes were also differentially abundant in more arid T. triandra regions. These results suggest that T. triandra naturally growing in soils under more arid conditions have greater reliance on rhizosphere core taxa than plants growing under wetter conditions. Our study underscores the likely importance of targeted recruitment of bacteria into the rhizosphere by grassland keystone species, such as T. triandra, when growing in arid conditions. This bacterial soil recruitment is expected to become even more important under climate change.

Lozano, V., F. Marzialetti, A. T. R. Acosta, I. Arduini, G. Bacchetta, G. Domina, V. L. A. Laface, et al. 2024. Prioritizing management actions for invasive non-native plants through expert-based knowledge and species distribution models. Ecological Indicators 166: 112279. https://doi.org/10.1016/j.ecolind.2024.112279

Given the high number of non-native plants that are being introduced worldwide and the time required to process formal pest risk analyses, a framework for the prioritization of management actions is urgently required. We therefore propose a framework for a replicable and standardized prioritization for management actions (eradication, control and monitoring) of invasive non-native plants, combining expert knowledge, current and future climatic suitability estimated by species distribution models (SDMs), clustering and ordination techniques. Based on expert consultation and using Italy as case study, invasive non-native plant species were selected and three categories of management actions were identified: eradication, control and containment, and monitoring. Finally, two further classes of priorities were proposed for each of the management actions: “high” and “low” priority. Overall, SDMs highlighted a high and very high suitability for Continental and Mediterranean bioregions for most invasive plants. Cluster analysis revealed three distinct clusters with varying levels of suitability for the Italian bioregions. Cluster 1 exhibited a higher suitability across all Italian bioregions, whereas non-native plants grouped in Cluster 2 predominantly featured high suitability in Mediterranean areas. Finally, Cluster 3 showed the lowest suitability values. Two ordination analysis highlighted the variability in bioclimatic suitability for each non-native plant within each cluster, as well as their current distribution pattern. Lastly, a third ordination, integrating bioclimatic suitability and spatial patterns, has allowed the differentiation of management actions for each non-native plant at both national and bioregional scales. Specifically, seven non-native plants were earmarked for eradication action, six for monitoring action, while the remaining species were deemed suitable for control and containment. Our results and the methodology proposed meet the demand for replicable new early warning tools; that is to predict the location of new outbreaks, to establish priorities for eradication, control and containment, and to monitor invasive non-native species.

Liendo, D., J. A. Campos, and A. Gandarillas. 2023. Cortaderia selloana, an example of aggressive invaders that affect human health, yet to be included in binding international invasive catalogues. NeoBiota 89: 229–237. https://doi.org/10.3897/neobiota.89.110500

Invasive plant species can suppress local biodiversity, affect soil properties and modify the landscape. However, an additional concern of plant invasions that has been more disregarded is their impact on environmental human health. Here, we discuss the case of Cortaderia selloana (Schult. & Schult.f.) Asch. & Graebn, as an example of a worldwide invasive species with a strong environmental impact. We summarise the main facts regarding the C. selloana invasion, the recent clinical evidence of its impact on human health and the great potential expansion of the species in the context of climate change. C. selloana constitutes a clear example to boost demands from policy makers for urgent and efficient measures to control or eradicate invasive species, also in ruderal areas. This aggressive invader is still out of relevant binding international invasive species catalogues, including the European List of Invasive Alien Species of Union concern (Union list), and is still subjected to extensive trading in some European countries. Therefore, including C. selloana in the Union list becomes mandatory to impose full restrictions on keeping, importing, selling, breeding and cultivating the species.

Kudoh, A., J. P. Megonigal, J. A. Langley, G. L. Noyce, T. Sakai, and D. F. Whigham. 2023. Reproductive Responses to Increased Shoot Density and Global Change Drivers in a Widespread Clonal Wetland Species, Schoenoplectus americanus. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01249-z

The expansion of many wetland species is a function of both clonal propagation and sexual reproduction. The production of ramets through clonal propagation enables plants to move and occupy space near parent ramets, while seeds produced by sexual reproduction enable species to disperse and colonize open or disturbed sites both near and far from parents. The balance between clonal propagation and sexual reproduction is known to vary with plant density but few studies have focused on reproductive allocation with density changes in response to global climate change. Schoenoplectus americanus is a widespread clonal wetland species in North America and a dominant species in Chesapeake Bay brackish tidal wetlands. Long-term experiments on responses of S . americanus to global change provided the opportunity to compare the two modes of propagation under different treatments. Seed production increased with increasing shoot density, supporting the hypothesis that factors causing increased clonal reproduction (e.g., higher shoot density) stimulate sexual reproduction and dispersal of genets. The increase in allocation to sexual reproduction was mainly the result of an increase in the number of ramets that flowered and not an increase in the number of seeds per reproductive shoot, or the ratio between the number of flowers produced per inflorescence and the number of flowers that developed into seeds. Seed production increased in response to increasing temperatures and decreased or did not change in response to increased CO 2 or nitrogen. Results from this comparative study demonstrate that plant responses to global change treatments affect resource allocation and can alter the ability of species to produce seeds.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Lian, D., J. Wei, C. Chen, M. Niu, H. Zhang, and Q. Zhao. 2023. Invasion risks presented by Gonopsis affinis and the use of Trissolcus mitsukurii as a biological control agent under present and future climate conditions. Pest Management Science. https://doi.org/10.1002/ps.7712

AbstractBackgroundGonopsis affinis (Uhler) is a stinkbug that represents a significant threat to the production of rice (Oryza sativa L.), sugarcane (Saccharum officinarum L.) and eulalia (Miscanthus sinensis (Andersson)), and has been listed as a sugarcane pest in Japan. Trissolcus mitsukurii Ashmead is an egg parasitoid of G. affinis. To determine the potential of T. mitsukurii to be a biological control agent for G. affinis, we aim to predict the current and future areas of suitable habitat for these two species and their overlap with areas of present crop production. We developed MaxEnt models using two different variable selection methods and compared the two for T. mitsukurii with a CLIMEX model.ResultsThe results showed extensive suitable areas for G. affinis under current climate conditions in East Asia, West Africa, Madagascar, and South America. These ranges overlap with areas currently being used for the production of the three crops in question. More than half overlap with areas of suitable habitat for T. mitsukurii. The most critical environmental variable determining habitat suitability for G. affinis was showed to be precipitation of warmest quarter, whilst for T. mitsukurii it was min temperature of the coldest month.ConclusionBased on our assessment we recommend the immediate implementation of monitoring and invasion prevention measures for G. affinis in southwest China, the Malay Archipelago and West Africa. We suggest that T. mitsukurii be considered for use as a biological control agent in East Asia, Madagascar, Florida and Brazil in the case of future invasions by G. affinis.This article is protected by copyright. All rights reserved.

Borges, C. E., R. Von dos Santos Veloso, C. A. da Conceição, D. S. Mendes, N. Y. Ramirez-Cabral, F. Shabani, M. Shafapourtehrany, et al. 2023. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Scientific Reports 13. https://doi.org/10.1038/s41598-023-38910-3

Brassica napus , a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040–2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus , with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus , impacting regions such as Canada, China, Brazil, and the United States.

Goolsby, J. A., P. J. Moran, M. Martínez Jiménez, C. Yang, K. Canavan, Q. Paynter, N. Ota, and D. J. Kriticos. 2023. Biology of Invasive Plants 4. Arundo donax L. Invasive Plant Science and Management 16: 81–109. https://doi.org/10.1017/inp.2023.17

Lima, V. P., R. A. Ferreira de Lima, F. Joner, L. D’Orangeville, N. Raes, I. Siddique, and H. ter Steege. 2023. Integrating climate change into agroforestry conservation: A case study on native plant species in the Brazilian Atlantic Forest. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14464

Designing multispecies systems with suitable climatic affinity and identifying species' vulnerability under human‐driven climate change are current challenges to achieve successful adaptation of natural systems. To address this problem, we need to (1) identify groups of species with climatic similarity under climate scenarios and (2) identify areas with high conservation value under predicted climate change.To recognize species with similar climatic niche requirements that can be grouped for mixed cropping in Brazil, we employed ecological niche models (ENMs) and Spearman's ρ for overlap. We also used prioritization algorithms to map areas of high conservation value using two Shared Socioeconomic Pathways (SSP2‐4.5 and SSP5‐8.5) to assess mid‐term (2041–2060) and long‐term (2061–2080) climate change impacts.We identified 15 species groups with finer climatic affinities at different times depicted on hierarchical clustering dendrograms, which can be combined into agroecological agroforestry systems. Furthermore, we highlight the climatically suitable areas for these groups of species, thus providing an outlook of where different species will need to be planted over time to be conserved. In addition, we observed that climate change is predicted to modify the spatial association of these groups under different future climate scenarios, causing a mean negative change in species climatic similarity of 9.5% to 13.7% under SSP2‐4.5 scenario and 9.5% to 10.5% under SSP5‐8.5, for 2041–2060 and 2061–2080, respectively.Synthesis and applications. Our findings provide a framework for agroforestry conservation. The groups of species with finer climatic affinities identified and the climatically suitable areas can be combined into agroecological productive systems, and provide an outlook of where different species may be planted over time. In addition, the conservation priority zones displaying high climate stability for each species individually and all at once can be incorporated into Brazil's conservation plans by policymakers to prioritize specific sites. Lastly, we urge policymakers, conservation organizations and donors to promote interventions involving farmers and local communities, since the species' evaluated have proven to maintain landscapes with productive forest fragments and can be conserved in different Brazilian ecosystems.