Ciencia habilitada por datos de especímenes
Telford, E. M., N. Stevens, G. F. Midgley, and C. E. R. Lehmann. 2023. Nodulation alleviates the stress of lower water availability in Vachellia sieberiana. Plant Ecology. https://doi.org/10.1007/s11258-023-01302-8
The genus Vachellia (Fabaceae) has a pan-tropical distribution and numerous Vachellia species are currently observed to be expanding their indigenous ranges and/or are invasive. Most Vachellia species have the capacity to enhance nitrogen uptake via an N 2 -fixing rhizobial mutualism that manifests in specialized root nodule structures enabling the catalysis of atmospheric N 2 into a plant useable form. Improved understanding of nodulation may provide new insight to the changing patterns of ecological success of Vachellia species. Here, we investigated how the seedling growth, allometry and nodulation of two common Vachellia species, the arid Vachellia erioloba and the mesic Vachellia sieberiana , responded to varied levels of water availability. Seedlings were grown at 4%, 8% and 16% soil moisture content (SMC) for four months. The seedling growth and allometry of V. erioloba was unresponsive to changing water availability, and no nodulation was observed. The allometry of V. sieberiana was responsive to changing water availability and nodulation was observed; with the highest nodule biomass and growth rate recorded at 4% SMC. These patterns suggest that V. erioloba does not require the rhizobial mutualism, possibly due to lower competitive interactions between woody plants and grass in the arid savanna. Whereas, due to the competitive vegetation interactions typical in the mesic savanna, N 2 - fixation via nodule development could provide V. sieberiana a competitive advantage over grass not only in limited N conditions, but also during periods of lower water availability.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.
Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.09.005
Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.
Hinojosa-Espinosa, O., D. Potter, M. Ishiki, E. Ortiz, and J. L. Villaseñor. 2021. Dichrocephala integrifolia (Astereae, Asteraceae), a new exotic genus and species for Mexico and second record for the New World. Botanical Sciences 99: 708–716. https://doi.org/10.17129/botsci.2754
Background: Dichrocephala is an Old-World genus of the tribe Astereae within the family Asteraceae. One species, D . integrifolia , has been recently reported as introduced in the New World from a pair of collections from Guatemala. During field work in the state of Chiapas in southern Mexico, the species was found and collected. This is the first record of both the genus and species in Mexico and the second record for these taxa in the Americas.
 Question: Can D . integrifolia occur in more areas in the New World besides those known from Guatemala and Chiapas?
 Studied species: Dichrocephala integrifolia 
 Study site and dates: Mexico, Central America, and the Caribbean.
 Methods: An ecological niche model was made and it was projected into the New World.
 Results: The ecological niche model predicts the records of D. integrifolia in the New World in addition to other ecologically suitable areas, mostly in pine-oak forests in Mexico and Central America and zones with humid mountain and pine forest in the Caribbean. Moreover, a morphological description and illustrations of the species are provided to help with its identification.
 Conclusions: It is desirable to avoid the further spreading of D . integrifolia in the New World. Although this species is not considered as invasive, it seems to have a high dispersal potential and the ecological niche modelling indicates larger regions in the Americas that might be affected.
Ripley, B. S., S. L. Raubenheimer, L. Perumal, M. Anderson, E. Mostert, B. S. Kgope, G. F. Midgley, and K. J. Simpson. 2022. CO 2 ‐fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree. Functional Ecology. https://doi.org/10.1111/1365-2435.14215
CO2‐fertilisation is implicated in the widespread and significant woody encroachment of savannas due to CO2‐stimulated increases in belowground reserves that enhance sapling regrowth after fire. However, the effect of CO2 concentration ([CO2]) on tree responses to the other major disturbance in savannas, herbivory, is poorly understood. Herbivory‐responses cannot be predicted from fire‐responses, as herbivore effects occur earlier during establishment and are moderated by plant palatability and defence rather than belowground carbon accumulation.
Matvijev, K., S. Dellicour, E. Kaymak, and O. J. Hardy. 2022. Spatially explicit phylogeographical reconstruction sheds light on the history of the forest cover in the Congo Basin. Journal of Biogeography. https://doi.org/10.1111/jbi.14507
Aim The impact of Pleistocene climatic oscillations on the biodiversity of African tropical rain forests remains poorly understood, and the Congo Basin is particularly understudied. We aim to elucidate how Pleistocene climatic oscillations shaped lowland tropical rain forests by investigating the intraspecific diversity and evolutionary history of a widespread tree species. Location Guineo-Congolian rain forest, Central Africa. Taxon Staudtia kamerunensis Warb. (Myristicaceae). Methods We used genome skimming combined with maximum likelihood and Bayesian inference to infer the plastid phylogeny. We estimated the time of speciation and differentiation, genetic diversity, and we employed a continuous phylogeographical approach to infer the dispersal history of its plastid lineages. Results We sequenced an average of 5,827,783 reads per sample, and the reconstructed reference plastome had a mean depth of 73.3. We identified five plastid lineages that diverged during the Early or Middle Pleistocene and are parapatric, suggesting past population fragmentation. Four lineages are endemic to Lower Guinea, and one spans the Congo Basin. We found contrasting patterns of expansion in the two regions, with a rapid and recent range expansion of the Congolian lineage in the last 200,000 years, while the spread of the Lower Guinean lineages was substantially slower. Main conclusion The contrasting demographic histories between eastern and western lineages, associated with contrasted levels of plant species richness and rates of endemism, suggest that forest cover was more stable in Lower Guinea during the Late Pleistocene than in Congolia, where the biodiversity might have been eroded before the forest re-expanded in the Congo basin. This study illustrates how a continuous phylogeographical inference approach, mostly applied so far for inferring the spread of fast-evolving pathogens over months or years, can provide new insights to reconstruct the dispersal history of tropical tree species over thousands or millions of years.
Amaral, D. T., I. A. S. Bonatelli, M. Romeiro-Brito, E. M. Moraes, and F. F. Franco. 2022. Spatial patterns of evolutionary diversity in Cactaceae show low ecological representation within protected areas. Biological Conservation 273: 109677. https://doi.org/10.1016/j.biocon.2022.109677
Mapping biodiversity patterns across taxa and environments is crucial to address the evolutionary and ecological dimensions of species distribution, suggesting areas of particular importance for conservation purposes. Within Cactaceae, spatial diversity patterns are poorly explored, as are the abiotic factors that may predict these patterns. We gathered geographic and genetic data from 921 cactus species by exploring both the occurrence and genetic databases, which are tightly associated with drylands, to evaluate diversity patterns, such as phylogenetic diversity and endemism, paleo-, neo-, and superendemism, and the environmental predictor variables of such patterns in a global analysis. Hotspot areas of cacti diversity are scattered along the Neotropical and Nearctic regions, mainly in the desertic portion of Mesoamerica, Caribbean Island, and the dry diagonal of South America. The geomorphological features of these regions may create a complexity of areas that work as locally buffered zones over time, which triggers local events of diversification and speciation. Desert and dryland/dry forest areas comprise paleo- and superendemism and may act as both museums and cradles of species, displaying great importance for conservation. Past climates, topography, soil features, and solar irradiance seem to be the main predictors of distinct endemism types. The hotspot areas that encompass a major part of the endemism cells are outside or poorly covered by formal protection units. The current legally protected areas are not able to conserve the evolutionary diversity of cacti. Given the rapid anthropogenic disturbance, efforts must be reinforced to monitor biodiversity and the environment and to define/plan current and new protected areas.
Boeschoten, L. E., U. Sass-Klaassen, M. Vlam, R. N. J. Comans, G. F. Koopmans, B. R. V. Meyer-Sand, S. N. Tassiamba, et al. 2022. Clay and soil organic matter drive wood multi-elemental composition of a tropical tree species: Implications for timber tracing. Science of The Total Environment 849: 157877. https://doi.org/10.1016/j.scitotenv.2022.157877
Forensic methods to independently trace timber origin are essential to combat illegal timber trade. Tracing product origin by analysing their multi-element composition has been successfully applied in several commodities, but its potential for timber is not yet known. To evaluate this potential the drivers of wood multi-elemental composition need to be studied. Here we report on the first study relating wood multi-elemental composition of forest trees to soil chemical and physical properties.We studied the reactive soil element pools and the multi-elemental composition in sapwood and heartwood for 37 Azobé (Lophira alata) trees at two forest sites in Cameroon. A total of 46 elements were measured using ICP-MS. We also measured three potential drivers of soil and wood elemental composition: clay content, soil organic matter and pH. We tested associations between soil and wood using multiple regressions and multivariate analyses (Mantel test, db-RDA). Finally, we performed a Random Forest analysis of heartwood elemental composition to check site assignment accuracy.We found elemental compositions of soil, sapwood and heartwood to be significantly associated. Soil clay content and organic matter positively influenced individual element concentrations (for 13 and 9 elements out of 46 respectively) as well as the multi-elemental composition in wood. However, associations between wood and topsoil elemental concentrations were only significant for one element. We found close associations between element concentrations and composition in sapwood and heartwood. Lastly, the Random Forest assignment success was 97.3 %.Our findings indicate that wood elemental composition is associated with that in the topsoil and its variation is related to soil clay and organic matter content. These associations suggests that the multi-elemental composition of wood can yield chemical fingerprints obtained from sites that differ in soil properties. This finding in addition to the high assignment accuracy shows potential of multi-element analysis for tracing wood origin.
Pérez, G., M. Vilà, and B. Gallardo. 2022. Potential impact of four invasive alien plants on the provision of ecosystem services in Europe under present and future climatic scenarios. Ecosystem Services 56: 101459. https://doi.org/10.1016/j.ecoser.2022.101459
Invasive alien species (IAS) are one of the main threats to biodiversity conservation, with significant socio-economic and ecological impacts as they disrupt ecosystem services and compromise human well-being. Global change may exacerbate the impacts of IAS, since rising temperatures and human activities favour their introduction and range expansion. Therefore, anticipating the impacts of biological invasions is crucial to support decision-making for their management. In this work, the potential impacts of four invasive alien plant species: Ailanthus altissima, Baccharis halimifolia, Impatiens glandulifera and Pueraria montana, on the provision of three ecosystem services in Europe were evaluated under current and future climate change scenarios. Using a risk analysis protocol, we determined that the most affected services are food provisioning, soil erosion regulation and the maintenance of biological diversity. To evaluate future impacts, species distribution models were calibrated using bioclimatic, environmental and human impact variables. We found that most of continental Europe is suitable for the establishment of A. altissima, B. halimifolia and I. glandulifera, while the potential distribution of P. montana is more limited. Models anticipate a shift in the distribution range for the species towards the north and east of Europe under future scenarios. Bivariate analysis allowed the identification of trends for future impacts in ecosystem services by simultaneously visualising the potential distribution of invasive species and the provision of ecosystem services. Our models project an increase in critical and high impact areas on the analysed ecosystem services, with Western Europe and the British Isles as the most affected regions. In comparison, lower impacts are projected for the Mediterranean region, likely as a consequence of the northwards expansion of invaders. Measures need to be taken to mitigate the expansion and impact of invasive species as our work shows that it can jeopardise the provision of three key services in Europe.
Catarino, S., D. Goyder, I. Darbyshire, E. Costa, R. Figueira, M. C. Duarte, and M. M. Romeiras. 2022. Species Diversity and Endemicity in the Angolan Leguminosae Flora. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.871261
Angola has a great diversity of species and ecosystems and a high level of endemism. However, knowledge of the native flora remains very incomplete and outdated. Leguminosae is the largest family in the country, including many species which are of local or more regional economic importance. Based on an extensive review of bibliographic sources, natural history collections, and online databases, the checklist of Angolan Leguminosae plants was updated, including data on their native distribution, conservation status, and principal uses. The endemic taxa were the subject of additional investigation, including the main habitat, the number of collections preserved in herbaria, and the locality of the first collection. We identified 953 Leguminosae taxa occurring in Angola, of which 165 are endemic to the country. Among the 180 genera found, Crotalaria (136) and Indigofera (96) have the highest number of taxa. Almost half of the studied species have important applications, mainly in traditional medicine (385), forage (267), timber (188), and food (120). Nevertheless, only 27.7% have been assessed according to the IUCN Red List and 10 species are classified as threatened. Thirty-three endemics are known only from the type specimen, revealing the lack of knowledge on these species and the need for further field research. More than 30 type specimens were collected in the Serra da Chela, which highlights the importance of this region for biodiversity conservation.