Ciencia habilitada por datos de especímenes

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

López‐Delgado, J., and P. G. Meirmans. 2021. History or demography? Determining the drivers of genetic variation in North American plants. Molecular Ecology 31: 1951–1962. https://doi.org/10.1111/mec.16230

Understanding the impact of historical and demographic processes on genetic variation is essential for devising conservation strategies and predicting responses to climate change. Recolonization after Pleistocene glaciations is expected to leave distinct genetic signatures, characterised by lower ge…

Liu, J., L. Wang, C. Sun, B. Xi, D. Li, Z. Chen, Q. He, et al. 2021. Global distribution of soapberries (Sapindus L.) habitats under current and future climate scenarios. Scientific Reports 11. https://doi.org/10.1038/s41598-021-98389-8

Sapindus (Sapindus L.) is a widely distributed economically important tree genus that provides biodiesel, biomedical and biochemical products. However, with climate change, deforestation, and economic development, the diversity of Sapindus germplasms may face the risk of destruction. Therefore, util…

Wang, C.-J., and J.-Z. Wan. 2021. Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation 19: 475–486. https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

Chu, X., P. F. Gugger, L. Li, J. Zhao, and Q. Li. 2021. Responses of an endemic species ( Roscoea humeana ) in the Hengduan Mountains to climate change J. Sun [ed.],. Diversity and Distributions 27: 2231–2244. https://doi.org/10.1111/ddi.13397

Aim: Adaptation, migration and extinction of species is closely associated with climate changes and shape the distribution of biodiversity. The adaptive responses of species in the biodiversity hotspot, the Hengduan Mountains, to climate change remain poorly understood. Location: The Hengduan Mount…

Baumbach, L., D. L. Warren, R. Yousefpour, and M. Hanewinkel. 2021. Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Communications Biology 4. https://doi.org/10.1038/s42003-021-02359-9

The tropical forests of Central America serve a pivotal role as biodiversity hotspots and provide ecosystem services securing human livelihood. However, climate change is expected to affect the species composition of forest ecosystems, lead to forest type transitions and trigger irrecoverable losses…

Lopes, A., L. O. Demarchi, A. C. Franco, A. B. Ferreira, C. S. Ferreira, F. Wittmann, I. N. Santiago, et al. 2021. Predicting the potential distribution of aquatic herbaceous plants in oligotrophic Central Amazonian wetland ecosystems. Acta Botanica Brasilica 35: 22–36. https://doi.org/10.1590/0102-33062020abb0188

Aquatic herbaceous plants are especially suitable for mapping environmental variability in wetlands, as they respond quickly to environmental gradients and are good indicators of habitat preference. We describe the composition of herbaceous species in two oligotrophic wetland ecosystems, floodplains…

Jin, W.-T., D. S. Gernandt, C. Wehenkel, X.-M. Xia, X.-X. Wei, and X.-Q. Wang. 2021. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences 118. https://doi.org/10.1073/pnas.2022302118

How coniferous forests evolved in the Northern Hemisphere remains largely unknown. Unlike most groups of organisms that generally follow a latitudinal diversity gradient, most conifer species in the Northern Hemisphere are distributed in mountainous areas at middle latitudes. It is of great interest…

Bontrager, M., T. Usui, J. A. Lee‐Yaw, D. N. Anstett, H. A. Branch, A. L. Hargreaves, C. D. Muir, and A. L. Angert. 2021. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75: 1316–1333. https://doi.org/10.1111/evo.14231

Every species experiences limits to its geographic distribution. Some evolutionary models predict that populations at range edges are less well‐adapted to their local environments due to drift, expansion load, or swamping gene flow from the range interior. Alternatively, populations near range edges…

Dellinger, A. S., R. Pérez‐Barrales, F. A. Michelangeli, D. S. Penneys, D. M. Fernández‐Fernández, and J. Schönenberger. 2021. Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytologist 231: 864–877. https://doi.org/10.1111/nph.17390

Evolutionary shifts from bee to vertebrate pollination are common in tropical mountains. Reduction in bee pollination efficiency under adverse montane weather conditions was proposed to drive these shifts. Although pollinator shifts are central for the evolution and diversification of angiosperms, w…