Ciencia habilitada por datos de especímenes

Rose, J. P., J. G. Zaborsky, N. Karimi, and K. J. Sytsma. 2025. Phylogenomics, historical biogeography, and diversification of leaf traits in the Malagasy‐endemic genus Uncarina (Pedaliaceae). American Journal of Botany 112. https://doi.org/10.1002/ajb2.70028

Premise Uncarina contains 14 species of woody plants endemic to Madagascar. Its occurrence across dryland biomes on the island make it an interesting system to study the diversification of the flora.MethodsUsing samples of all species and 512 nuclear loci, we reconstructed phylogenetic trees to examine species relationships and assess their monophyly. We also studied the historical biogeography of the genus and combined leaf trait data derived from SEM photography of trichomes and geometric morphometric analysis of leaf shape to better understand its diversification across dryland biomes.ResultsUncarina is monophyletic, and major clades showed a clear biogeographical signal. Leaf traits also corroborated relationships among major clades. Although most species are monophyletic, at least one cryptic species exists. Uncarina, like many arid‐adapted plant lineages in Madagascar originated in the Miocene or Pleistocene. Geographic movement has been primarily along a south–north axis, with river basins apparently acting as barriers to gene flow. The evolution of leaf traits corroborated movement from the spiny thicket to the dry forest biome.ConclusionsAs with Malagasy lemurs and other animals, riverine barriers may have been involved in the diversification of Uncarina and may apply more broadly to epizoochorous angiosperms of Madagascar. Leaf traits suggest either a loss of adaptations to extremely arid, high irradiance environments or a release from herbivores. As is likely needed in other Malagasy lineages, more thorough population‐level sampling and specimen collecting is needed to fully understand the taxonomic and morphological diversity in the genus.

Hagelstam-Renshaw, C., J. J. Ringelberg, C. Sinou, W. Cardinal-McTeague, and A. Bruneau. 2024. Biome evolution in subfamily Cercidoideae (Leguminosae): a tropical arborescent clade with a relictual depauperate temperate lineage. Brazilian Journal of Botany 48. https://doi.org/10.1007/s40415-024-01058-z

Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials). Species distribution maps derived from cleaned occurrence records were compiled and compared with existing biome maps and with the literature to assign species to biomes. Rainforest (144 species), succulent (44 species), savanna (36 species), and temperate (10 species) biomes were found to be important in describing the global distribution of Cercidoideae, with many species occurring in more than one biome. Two phylogenetically isolated species-poor temperate ( Cercis ) and succulent ( Adenolobus ) biome lineages are sister to two broadly distributed species-rich tropical clades. Ancestral state reconstructions on a time-calibrated phylogeny suggest biome shifts occurred throughout the evolutionary history of the subfamily, with shifts between the succulent and rainforest biomes, from the rainforest to savanna, from the succulent to savanna biome, and one early occurring shift into (or from) the temperate biome. Of the 26 inferred shifts in biome, three are closely associated with a shift from the ancestral tree/shrub growth form to a liana or herbaceous perennial habit. Only three of the 13 inferred transcontinental dispersal events are associated with biome shifts. Overall, we find that biome shifts tend to occur within the same continent and that dispersals to new continents tend to occur within the same biome, but that nonetheless the biome-conserved and biogeographically structured Cercidoideae have been able to adapt to different environments through time.

Streiff, S. J. R., E. O. Ravomanana, M. Rakotoarinivo, M. Pignal, E. P. Pimparé, R. H. J. Erkens, and T. L. P. Couvreur. 2024. High-quality herbarium-label transcription by citizen scientists improves taxonomic and spatial representation of the tropical plant family Annonaceae. Adansonia 46. https://doi.org/10.5252/adansonia2024v46a18

Herbarium specimens provide an important and central resource for biodiversity research. Making these records digitally available to end-users represents numerous challenges, in particular, transcribing metadata associated with specimen labels. In this study, we used the citizen science initiative ‘Les Herbonautes’ and the Récolnat network to transcribe specific data from all herbarium specimen labels stored at the Muséum national d’Histoire naturelle in Paris of the large tropical plant family Annonaceae. We compared this database with publicly available global biodiversity repository data and expert checklists. We investigated spatial and taxonomic advances in data availability at the global and country scales. A total of 20 738 specimens were transcribed over the course of more than two years contributing to and significantly extending the previously available specimen and species data for Annonaceae worldwide. We show that several regions, mainly in Africa and South East Asia not covered by online global datasets, are uniquely available in the P herbarium, probably linked to past history of the museum’s botanical exploration. While acknowledging the challenges faced during the transcription of historic specimens by citizen scientists, this study highlights the positive impact of adding records to global datasets both in space and time. This is illustrative for researchers, collection managers, policy makers as well as funders. These datasets will be valuable for numerous future studies in biodiversity research, including ecology, evolution, conservation and climate change science.

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.

Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737

Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…