Ciencia habilitada por datos de especímenes

Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.

ter Huurne, M. B., L. J. Potgieter, C. Botella, and D. M. Richardson. 2023. Melaleuca (Myrtaceae): Biogeography of an important genus of trees and shrubs in a changing world. South African Journal of Botany 162: 230–244. https://doi.org/10.1016/j.sajb.2023.08.052

The number of naturalised and invasive woody plant species has increased rapidly in recent decades. Despite the increasing interest in tree and shrub invasions, little is known about the invasion ecology of most species. This paper explores the global movement of species in the genus Melaleuca (Myrtaceae; here including the genus Callistemon). We assess the global introduction history, distribution and biogeographic status of the genus. Various global species occurrence databases, citizen science (iNaturalist), and the literature were used.Seventy-two species [out of 386 Melaleuca species; 19%] have been introduced to at least 125 regions outside their native range. The main regions of global Melaleuca introductions are Southeast Asia, the southern parts of North America, south-eastern South America, southern Africa and Europe. The earliest record of a Melaleuca species outside of the native range of the genus is 1789. First records of Melaleuca species outside their native range were most commonly recorded in the 1960s, with records from all over the world. The main reasons for Melaleuca introductions were for use in the tea tree (pharmaceutical value) and ornamental horticulture industries. Melaleuca introductions, naturalizations and invasions are recent compared to many other woody plant taxa. Experiences in Florida and South Africa highlight the potential of Melaleuca species to spread rapidly and have significant ecological impacts. It is likely that the accumulating invasion debt will result in further naturalization and invasion of Melaleuca species in the future.

Thongsangtum, N., J. Huang, S.-F. Li, Y. Thasod, and T. Su. 2023. Calophyllum (Calophyllaceae) from late Oligocene–Early Miocene of Li Basin, northern Thailand and its biogeographic and paleoclimatic implications. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.09.002

Fossils from tropical Asia, which are far from fully investigated, are important for understanding the evolution of plant diversity and the associated surrounding environment there. In this study, we report, as the first record in Thailand, the well-preserved leaf fossils of Calophyllum Linnaeus (Calophyllaceae) from the upper Oligocene–Lower Miocene lacustrine deposits in Li Basin, northern Thailand. The fossils were identified through detailed comparison with leaves of extant and fossil species. These leaf fossils are assigned to Calophyllum based on several key leaf characteristics such as oblanceolate or oblong in shape and parallel secondary veins, nearly perpendicular to the midvein, as well as secondary veins alternate, closely placed, craspedodromous, parallel, dense, and distinct on surface, forming marginal veins. Based on detailed morphological comparison, these fossil leaves are assigned to C. suraikholaensis Awasthi and Prasad, 1990 and Calophyllum sp. The discovery of Calophyllum indicates a montane subtropical to tropical climate in northern Thailand during the Oligocene–Miocene. Together with previous fossil records, these results suggest that this genus probably originated in India during the Paleogene, and spread from India to Indochina during the Neogene, leading to its modern distribution, which currently prefers tropical climates.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Wilf, P., and R. M. Kooyman. 2023. Do Southeast Asia’s paleo‐Antarctic trees cool the planet? New Phytologist. https://doi.org/10.1111/nph.19067

Many tree genera in the Malesian uplands have Southern Hemisphere origins, often supported by austral fossil records. Weathering the vast bedrock exposures in the everwet Malesian tropics may have consumed sufficient atmospheric CO2 to contribute significantly to global cooling over the past 15 Myr. However, there has been no discussion of how the distinctive regional tree assemblages may have enhanced weathering and contributed to this process. We postulate that Gondwanan‐sourced tree lineages that can dominate higher‐elevation forests played an overlooked role in the Neogene CO2 drawdown that led to the Ice Ages and the current, now‐precarious climate state. Moreover, several historically abundant conifers in Araucariaceae and Podocarpaceae are likely to have made an outsized contribution through soil acidification that increases weathering. If the widespread destruction of Malesian lowland forests continues to spread into the uplands, the losses will threaten unique austral plant assemblages and, if our hypothesis is correct, a carbon sequestration engine that could contribute to cooler planetary conditions far into the future. Immediate effects include the spread of heat islands, significant losses of biomass carbon and forest‐dependent biodiversity, erosion of watershed values, and the destruction of tens of millions of years of evolutionary history.

Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885

Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Bento, M., H. Niza, A. Cartaxana, S. Bandeira, J. Paula, and A. M. Correia. 2023. Mind the Gaps: Taxonomic, Geographic and Temporal Data of Marine Invertebrate Databases from Mozambique and São Tomé and Príncipe. Diversity 15: 70. https://doi.org/10.3390/d15010070

One of the best ways to share and disseminate biodiversity information is through the digitization of data and making it available via online databases. The rapid growth of publicly available biodiversity data is not without problems which may decrease the utility of online databases. In this study we analyze taxonomic, geographic and temporal data gaps, and bias related to existing data on selected marine invertebrate occurrences along the coastline of two African countries, Mozambique and São Tomé and Príncipe. The final marine invertebrate dataset comprises of 19.910 occurrences, but 32% of the original dataset occurrences were excluded due to data gaps. Most marine invertebrates in Mozambique were collected in seagrasses, whereas in São Tomé and Príncipe they were mostly collected offshore. The dataset has a temporal coverage from 1816 to 2019, with most occurrences collected in the last two decades. This study provides baseline information relevant to a better understanding of marine invertebrate biodiversity data gaps and bias in these habitats along the coasts of these countries. The information can be further applied to complete marine invertebrate data gaps contributing to design informed sampling strategies and advancing refined datasets that can be used in management and conservation plans in both countries.

Dang, A. T. N., M. Reid, and L. Kumar. 2023. Coastal Melaleuca wetlands under future climate and sea-level rise scenarios in the Mekong Delta, Vietnam: vulnerability and conservation. Regional Environmental Change 23. https://doi.org/10.1007/s10113-022-02009-8

Melaleuca wetland ecosystems play crucial roles in ecology and human livelihood, yet the ecosystems are vulnerable to climate change and relative sea-level rise (SLR) impacts. Documents and research on climate change and SLR impacts on coastal Melaleuca wetlands in the Mekong Delta, Vietnam, are currently limited. Therefore, the present study aimed to identify changes in habitat suitability for a coastal Melaleuca wetland species in response to different future climate change and SLR scenarios, in the West Sea of the Mekong Delta, with the aid of an ensemble species distribution model (SDM) and the Sea Level Affecting Marshes Model (SLAMM). Melaleuca species occurrence records, bioclimatic and eco-physiological variables were utilized to predict potential distribution of the species in response to current and future climate scenarios (i.e. RCP4.5 and 8.5) for the year 2070. Wetland maps for 2020, a digital elevation model (DEM) and localized site-specific parameters (i.e. historic trend of SLR, erosion, subsidence and overwash) were utilized as input data for SLAMM to simulate spatial distribution of Melaleuca/forested wetlands under the two SLR scenarios. The final habitat suitability for the Melaleuca wetland species was identified based on these two resultant datasets, climatic suitability and spatial distribution of the wetlands. Simulated results suggested mean losses in suitable habitat of 29.8% and 58.7% for stable and subsidence scenarios, respectively, for the year 2070 in comparison to the baseline scenario. SLR combined with considerable subsidence rate was suggested as one of the main drivers responsible for the habitat suitability loss. The findings obtained from the current work are useful sources for planning conservation areas for the Melaleuca wetlands, to protect and preserve the ecosystems and their important services under future climate and SLR scenarios.

Mai, J., and G. Liu. 2023. Modeling and predicting the effects of climate change on cotton-suitable habitats in the Central Asian arid zone. Industrial Crops and Products 191: 115838. https://doi.org/10.1016/j.indcrop.2022.115838

Climate change has significantly affected global agricultural production, particularly in arid zones of Central Asia. Thus, we analyzed changes in the habitat suitability of cotton in Central Asia under various shared socioeconomic pathway (SSP) scenarios during 2021–2060. The results showed that the average minimum temperature in April, precipitation seasonality, and distance to rivers were the main environmental factors influencing the suitable distribution of cotton. Suitable habitats expanded toward the north and east, reaching a maximum net increase of 10.85 × 104 km2 under the SSP5–8.5 scenario during 2041–2060, while habitats in the southwestern area showed a contracting trend. The maximum decreased and increased habitats were concentrated at approximately 68°E and 87°E, respectively. In addition, their latitudinal distributions were concentrated at approximately 40°N and 44°N. The longitudinal and latitudinal dividing lines of increased and decreased habitats were 69°E and 41°N, respectively. Habitats at the same altitude showed an increasing trend, excluding the elevation range of 125–325 m. Habitat shifts could exacerbate spatial conflicts with forest/grassland and natural reserves. The maximum spatial overlap between them was observed under the SSP5–8.5 scenario during 2041–2060. These findings could provide scientific evidence for rational cotton cultivation planning in global arid zones.