Ciencia habilitada por datos de especímenes

Robin-Champigneul, F., J. Gravendyck, H. Huang, A. Woutersen, D. Pocknall, N. Meijer, G. Dupont-Nivet, et al. 2023. Northward expansion of the southern-temperate podocarp forest during the Early Eocene Climatic Optimum: Palynological evidence from the NE Tibetan Plateau (China). Review of Palaeobotany and Palynology: 104914.

The debated vegetation response to climate change can be investigated through palynological fossil records from past extreme climate conditions. In this context, the early Eocene (53.3 to 41.2 million years ago (Ma)) is often referred to as a model for a greenhouse Earth. In the Xining Basin, situated on the North-eastern Tibetan Plateau (NETP), this time interval is represented by an extensive and well-dated sedimentary sequence of evaporites and red mudstones. Here we focus on the palynological record of the Early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma) and study the fossil gymnosperm pollen composition in these sediments. In addition, we also investigate the nearest living relatives (NLR) or botanical affinity of these genera and the paleobiogeographic implications of their occurrence in the Eocene of the NETP. To reach our objective, we complemented transmitted light microscopy with laser scanning- and electron microscopy techniques, to produce high-resolution images, and illustrate the morphological variation within fossil and extant gymnosperm pollen. Furthermore, a morphometric analysis was carried out to investigate the infra- and intrageneric variation of these and related taxa. To place the data in context we produced paleobiogeographic maps for Phyllocladidites and for other Podocarpaceae, based on data from a global fossil pollen data base, and compare these with modern records from GBIF. We also assessed the climatic envelope of the NLR. Our analyses confirm the presence of Phyllocladidites (NLR Phyllocladus, Podocarpaceae) and Podocarpidites (NLR Podocarpus, Podocarpaceae) in the EECO deposits in the Xining Basin. In addition, a comparative study based on literature suggests that Parcisporites is likely a younger synonym of Phyllocladidites. Our findings further suggest that the Phyllocladidites specimens are derived from a lineage that was much more diverse than previously thought, and which had a much larger biogeographical distribution during the EECO than at present. Based on the climatic envelope of the NLR, we suggest that the paleoclimatic conditions in the Xining Basin were warmer and more humid during the EECO. We conclude that phylloclade-type conifers typical of the southern-temperate podocarp forests, had a northward geographical expansion during the EECO, followed by extirpation.

Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON.

Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073.

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Lannuzel, G., L. Pouget, D. Bruy, V. Hequet, S. Meyer, J. Munzinger, and G. Gâteblé. 2022. Mining rare Earth elements: Identifying the plant species most threatened by ore extraction in an insular hotspot. Frontiers in Ecology and Evolution 10.

Conservation efforts in global biodiversity hotspots often face a common predicament: an urgent need for conservation action hampered by a significant lack of knowledge about that biodiversity. In recent decades, the computerisation of primary biodiversity data worldwide has provided the scientific community with raw material to increase our understanding of the shared natural heritage. These datasets, however, suffer from a lot of geographical and taxonomic inaccuracies. Automated tools developed to enhance their reliability have shown that detailed expert examination remains the best way to achieve robust and exhaustive datasets. In New Caledonia, one of the most important biodiversity hotspots worldwide, the plant diversity inventory is still underway, and most taxa awaiting formal description are narrow endemics, hence by definition hard to discern in the datasets. In the meantime, anthropogenic pressures, such as nickel-ore mining, are threatening the unique ultramafic ecosystems at an increasing rate. The conservation challenge is therefore a race against time, as the rarest species must be identified and protected before they vanish. In this study, based on all available datasets and resources, we applied a workflow capable of highlighting the lesser known taxa. The main challenges addressed were to aggregate all data available worldwide, and tackle the geographical and taxonomic biases, avoiding the data loss resulting from automated filtering. Every doubtful specimen went through a careful taxonomic analysis by a local and international taxonomist panel. Geolocation of the whole dataset was achieved through dataset cross-checking, local botanists’ field knowledge, and historical material examination. Field studies were also conducted to clarify the most unresolved taxa. With the help of this method and by analysing over 85,000 data, we were able to double the number of known narrow endemic taxa, elucidate 68 putative new species, and update our knowledge of the rarest species’ distributions so as to promote conservation measures.

Quiroga, M. P., and C. P. Souto. 2022. Ecological niche modeling, niche overlap, and good old Rabinowitz’s rarities applied to the conservation of gymnosperms in a global biodiversity hotspot. Landscape Ecology.

Context Biodiversity hotspots harbor 77% of endemic plant species. Patagonian Temperate Forest (PTF) is a part of a biodiversity hotspot, but over the past centuries, has been over-exploited, fragmented and replaced with exotic species plantations, lately also threatened by climate change. Objectives Our aim is to better understand patterns of habitat suitability and niche overlap of nine endemic gymnosperm species, key elements of the PTF, complementing traditional approaches of biodiversity conservation. Methods Using R packages and 3016 occurrence data, we deployed ecological niche models (ENM) in MaxEnt via kuenm, and classified species according to Rabinowitz’s types of rarity. We then overlapped their niches calculating Schoener's D index, and considered types of rarity in a spatial ecological context. Finally, we overlay high species’ suitability and protected areas and detected conservation priorities using GapAnalysis. Results We generated simplified ENMs for nine Patagonian gymnosperms and found that most niches overlap, and only one species displayed a unique niche. Surprisingly, we found that three species have divergent suitability of habitats across the landscape and not related with previously published geographic structure of neutral genetic variation. We showed that the rarer a species is the smaller niche volume tend to have, that six out of nine studied species have high conservation priority, and that there are conservation gaps in the PTF. Conclusion Our approach showed that there are unprotected suitable areas for native key species at high risk in PTF. Suggesting that integrating habitat-suitability models of multiple species, types of rarity, and niche overlap, can be a handy tool to identify potential conservation areas in global biodiversity hotspots.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37.

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Reichgelt, T., D. R. Greenwood, S. Steinig, J. G. Conran, D. K. Hutchinson, D. J. Lunt, L. J. Scriven, and J. Zhu. 2022. Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology 37.

During the early to middle Eocene, a mid‐to‐high latitudinal position and enhanced hydrological cycle in Australia would have contributed to a wetter and “greener” Australian continent where today arid to semi‐arid climates dominate. Here, we revisit 12 southern Australian plant megafossil sites from the early to middle Eocene to generate temperature, precipitation and seasonality paleoclimate estimates, net primary productivity (NPP) and vegetation type, based on paleobotanical proxies and compare to early Eocene global climate models. Temperature reconstructions are uniformly subtropical (mean annual, summer, and winter mean temperatures 19–21 °C, 25–27 °C and 14–16 °C, respectively), indicating that southern Australia was ∼5 °C warmer than today, despite a >20° poleward shift from its modern geographic location. Precipitation was less homogeneous than temperature, with mean annual precipitation of ∼60 cm over inland sites and >100 cm over coastal sites. Precipitation may have been seasonal with the driest month receiving 2–7× less than mean monthly precipitation. Proxy‐model comparison is favorable with an 1680 ppm CO2 concentration. However, individual proxy reconstructions can disagree with models as well as with each other. In particular, seasonality reconstructions have systemic offsets. NPP estimates were higher than modern, implying a more homogenously “green” southern Australia in the early to middle Eocene, when this part of Australia was at 48–64 °S, and larger carbon fluxes to and from the Australian biosphere. The most similar modern vegetation type is modern‐day eastern Australian subtropical forest, although distance from coast and latitude may have led to vegetation heterogeneity.

Colli-Silva, M., J. R. Pirani, and A. Zizka. 2022. Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics 69: 101668.

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.

Sarker, U., Y.-P. Lin, S. Oba, Y. Yoshioka, and K. Hoshikawa. 2022. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry 182: 104–123.

Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as ‘hidden hunger.’ Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985.

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.