Ciencia habilitada por datos de especímenes
Siqueira-Silva, T., and P. A. Martinez. 2023. Impacts of climate change on the distribution of venomous Conus (Gastropoda: Conidae) species in the Indo-Pacific region. Marine Environmental Research 192: 106237. https://doi.org/10.1016/j.marenvres.2023.106237
Climate change is affecting the distribution of marine organisms worldwide, including venomous marine gastropods that offer risks to human health, but also potential pharmacological resources, such as Conus sp. Species Distribution Models (SDMs) are valuable tools for predicting species distribution under climate change. The objective of our study was to evaluate the potential distribution of Conus geographus and C. textile in the Indo-Pacific region under different climate change scenarios for 2050 and 2090. We constructed SDMs with MaxEnt for each species, using bioclimatic variables from Bio-ORACLE and NOAA, and occurrence data from GBIF. We projected the best-fit model for the present and different future climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). We obtained high accuracy SDMs for C. geographus and C. textile, with Temperature and Primary Productivity as the main explanatory variables. Our future projections reveal that both species may react differently to climate change. Southeast Asia and Micronesia will continue to provide a climatically appropriate environment for both species; however, they may become more suitable for C. geographus and less suitable for C. textile. This may lead to a higher risk of human envenomation by C. geographus, but a lower risk by C. textile. A decreased suitability for C. textile may also lead to the loss of potential pharmacological resources among its range. Our study emphasizes how SDMs can be used to assess the future distribution of species with human health implications, which can aid in the monitoring of venomous marine species.
Gallagher, K. M., and P. G. Albano. 2023. Range contractions, fragmentation, species extirpations, and extinctions of commercially valuable molluscs in the Mediterranean Sea—a climate warming hotspot R. Selden [ed.],. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsad065
Abstract The Mediterranean Sea is a global hotspot of climate warming and biodiversity loss where molluscs have provided valuable ecosystem services, such as provisioning and cultural value, since pre-historic times. A high rate of warming and range shift limitations due to the semi-enclosed nature of the basin raise concerns about molluscan population persistence in future climate scenarios. We modelled the future distribution of 13 Mediterranean species of molluscs subject to industrial fisheries exploitation on both the Mediterranean and Atlantic European coasts. We tested the hypothesis that range contractions, fragmentation, and species extirpations will become increasingly severe in the Mediterranean by modelling mid-century and end-century species distributions for four IPCC climate change scenarios. Already under mild emissions scenarios, substantial range contractions and fragmentation are projected in the Mediterranean, suggesting global extinctions by end-century for most endemic species. Colder deep waters do not act as refugia, contrary to expectations. Species also occurring along the Atlantic European coasts may benefit from warming through range expansions to higher latitudes or deeper waters. Most of the modeled species are already over-exploited, but their eradication from the Mediterranean will imply substantial financial losses and a profound cultural change in coastal communities.
Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101
Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.
Chaudhary, C., J. M. Alfaro-Lucas, M. V. P. Simões, A. Brandt, and H. Saeedi. 2023. Potential geographic shifts in the coral reef ecosystem under climate change. Progress in Oceanography 213: 103001. https://doi.org/10.1016/j.pocean.2023.103001
The coral reefs are the most diverse marine ecosystem in the world. Considering its contribution as a natural resource for humanity and global biodiversity, it is critical to understand its response to climatic change. To date, no global predictions have been made about potential ecosystem changes in relation to its inhabiting species. Predicting changes in species' climatic suitability under increasing temperature and comparing them among species would be the first step in understanding the geographic and taxonomic coherence and discrepancies that may occur within the ecosystem. Using 57 species-specific global climate suitability models (of corals, molluscs, fish, crustaceans, and polychaetes) under present and future climate scenarios (RCP 4.5 and 8.5), we compared the potential coherence and differences and their cumulative impact on the ecosystem in warm, cold, shallow, and deep waters.Under the climatic scenarios, nearly 90% of 30 warm-water species were predicted to lose their suitability in the parts of the Indo-west Pacific, the Coast of Northern Australia, the South China Sea, the Caribbean Sea, and the Gulf of Mexico, resulting in the overall southward shift in their distributions. In contrast, a mixed response occurred in 27 cold-water species, with most northern temperate/boreal ones increasing their suitability in the Arctic Ocean and the Arctic species declining overall. We noticed that irrespective of their taxonomic group, the species with wider distribution ranges (thermal and geographic) had larger predicted gains in their suitability than their stenothermal counterparts, suggesting an increase of generalist species and a decline of specialist (endemic) species of the ecosystem under a warming climate.Our coherent projections of species' climatic suitability in warm and cold habitats of the tropics, temperate, boreal, and the Arctic, represent significant taxonomic groups of the ecosystem. This might indicate mass extinction risk (local– in the tropics and northern temperate regions, and overall– in the Arctic) in native habitats and a high species turnover across the ecosystem under a warming climate. This may also destabilise predator–prey dynamics in the ecosystem, especially if foraging specialists dominate coral food webs and adversely affect the associated countries. Our global projections highlight the regions of species’ potential loss and gain; stakeholders could use the information to protect biodiversity and maintain human well-being.
Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32. https://doi.org/10.3897/neobiota.81.96360
AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.
Sánchez, C. A., H. Li, K. L. Phelps, C. Zambrana-Torrelio, L.-F. Wang, P. Zhou, Z.-L. Shi, et al. 2022. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nature Communications 13. https://doi.org/10.1038/s41467-022-31860-w
Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351–67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence. Coronaviruses may spill over from bats to humans. This study uses epidemiological data, species distribution models, and probabilistic risk assessment to map overlap among people and SARSr-CoV bat hosts and estimate how many people are infected with bat-origin SARSr-CoVs in Southeast Asia annually.
Boulad, N., S. Al Shogoor, W. Sahwan, N. Al-Ouran, and B. Schütt. 2021. Systematic Conservation Planning as a Tool for the Assessment of Protected Areas Network in Jordan. Land 11: 56. https://doi.org/10.3390/land11010056
The present study aims to use systematic conservation planning to analyse and review the national protected areas (PAs) network in Jordan. The analysis included the application of three modules: the environmental risk surface (ERS), the relative biodiversity index (RBI), and the application of Marxa…
Qu, J., Y. Xu, Y. Cui, S. Wu, L. Wang, X. Liu, Z. Xing, et al. 2021. MODB: a comprehensive mitochondrial genome database for Mollusca. Database 2021. https://doi.org/10.1093/database/baab056
Mollusca is the largest marine phylum, comprising about 23% of all named marine organisms, Mollusca systematics are still in flux, and an increase in human activities has affected Molluscan reproduction and development, strongly impacting diversity and classification. Therefore, it is necessary to e…
Arfianti, T., and M. J. Costello. 2021. The distribution of benthic amphipod crustaceans in Indonesian seas. PeerJ 9: e12054. https://doi.org/10.7717/peerj.12054
Amphipod crustaceans are an essential component of tropical marine biodiversity. However, their distribution and biogeography have not been analysed in one of the world’s largest tropical countries nested in the Coral Triangle, Indonesia. We collected and identified amphipod crustaceans from eight s…
Dallas, J. W., A. Harris, J. Reinbolt, and R. W. Warne. 2021. Ecology of the synanthropic mediterranean house gecko (Hemidactylus turcicus) at their northern invasion front. Urban Ecosystems 25: 329–340. https://doi.org/10.1007/s11252-021-01136-0
Invasive herpetofauna are a significant threat to native wildlife and when colonizing higher latitudes, they must cope with greater seasonality that likely exposes them to temperatures below their preferred temperature range and reduced physiological performance. Therefore, it is important to unders…