Ciencia habilitada por datos de especímenes

Wenk, E., T. Mesaglio, D. Keith, and W. Cornwell. 2024. Curating protected area-level species lists in an era of diverse and dynamic data sources. Ecological Informatics 84: 102921. https://doi.org/10.1016/j.ecoinf.2024.102921

Dynamic yet accurate species lists for protected areas are essential for conservation and biodiversity research. Even when such lists exist, changing taxonomy, ongoing species migrations and invasions, and new discoveries of historically overlooked species mean static lists can become rapidly outdated. Biodiversity databases such as the Global Biodiversity Information Facility, and citizen science platforms such as iNaturalist, offer rapidly accessible, georeferenced data, but their accuracy is rarely tested. Here we compare species lists generated for two of the world's oldest, more famous protected areas – Yosemite National Park in California, United States and Royal National Park in New South Wales, Australia – using both automated data extraction techniques and extensive manual curation steps. We show that automated list creation without manual curation offers inflated measures of species diversity. Lists generated from herbarium vouchers required more curation than lists generated from iNaturalist, with both incorrect coordinates attached to vouchers and long-outdated names inflating voucher-based species lists. In comparison, iNaturalist data had relatively few errors, in part due to continual curation by a large community, including many botanical experts, and the frequent and automatic implementation of taxonomic updates. As such, iNaturalist will become an increasingly accurate supplementary source for automated biodiversity lists over time, but currently offers poor coverage of graminoid species and introduced species relative to showier, native taxa, and relies on continued expert contributions to identifications. At this point, researchers must manually curate lists extracted from herbarium vouchers or static park lists, and integrate these data with records from iNaturalist, to produce the most robust and taxonomically up-to-date species lists for protected areas.

Tulowiecki, S. J., and N. LaDuke. 2024. Models reveal shifting distribution of climatic suitability for pawpaw (Asimina triloba [L.] Dunal) cultivation under future climate change scenarios. Scientia Horticulturae 338: 113837. https://doi.org/10.1016/j.scienta.2024.113837

The pawpaw (Asimina triloba [L.] Dunal) is a deciduous tree notable for its large edible fruit. Native to the eastern US and Canada, it has earned attention as a horticultural commodity and focus of scientific inquiry. However, few studies have modeled its potential future distribution under climate change. This study predicted the current and future potential distribution for pawpaw in North America and globally, with a focus on understanding future climatic suitability for fruit cultivation. This study first modeled suitability via the Maximum Entropy (MaxEnt) method by relating climate predictors with different datasets on pawpaw distribution, including nursery locations growing pawpaw. It also trained a boosted regression tree (BRT) model to estimate where sufficient heat accumulation for fruit ripening would occur. The models were applied to two future times (2041–2060 and 2081–2100), four emissions scenarios (SSP126, SSP245, SSP370, and SSP585), and climate projections from three climate models. Using nursery locations, the MaxEnt model yielded a mean area-under-the-curve statistic of 0.978 (standard deviation = 0.009) using 10-fold cross-validation, indicating strong predictive performance. The model suggested optimal conditions for pawpaw at these values: -4 °C for minimum temperature of coldest month, 26 °C for maximum temperature of warmest month, 88 cm for annual precipitation, and 0 % for precipitation seasonality. Models suggested shifting suitable climate conditions and accompanying increases in heat accumulation for fruit ripening. Northern America, Eastern Europe, and Northern Europe were predicted to have higher and increasing suitability; Western Europe, Southern Europe, and Eastern Asia were predicted to have higher but decreasing suitability. Little uncertainty existed due to collinearity shift or dissimilarity between current and future climate, but more uncertainty existed when predictions were based on differing climate model projections. This study provides insight into the pawpaw's potential response to climate change, and guidance on future locations for cultivation.

Xiao, K., L. Ling, R. Deng, B. Huang, Y. Cao, Q. Wu, H. Ning, and H. Chen. 2024. Projecting the Potential Global Distribution of Sweetgum Inscriber, Acanthotomicus suncei (Coleoptera: Curculionidae: Scolytinae) Concerning the Host Liquidambar styraciflua Under Climate Change Scenarios. Insects 15: 897. https://doi.org/10.3390/insects15110897

Acanthotomicus suncei is a newly discovered bark beetle in China that significantly threatens the American sweetgum Liquidambar styraciflua. In recent years, this pest has spread from its original habitat to many surrounding cities, causing substantial economic and ecological losses. Considering the wide global distribution of its host, Liquidambar styraciflua, this pest is likely to continue to spread and expand. Once the pest colonizes a new climatically suitable area, the consequences could be severe. Therefore, we employed the CLIMEX and Random Forests model to predict the potential suitable distribution of A. suncei globally. The results showed that A. suncei was mainly distributed in Southern China, in South Hokkaido in Japan, Southern USA, the La Plata Plain in South America, southeastern Australia, and the northern Mediterranean; these areas are located in subtropical monsoon, monsoonal humid climates, or Mediterranean climate zones. Seasonal rainfall, especially in winter, is a key environmental factor that affects the suitable distribution of A. suncei. Under future climates, the total suitable area of A. suncei is projected to decrease to a certain extent. However, changes in its original habitat require serious attention. We found that A. suncei exhibited a spreading trend in Southwest, Central, and Northeast China. Suitable areas in some countries in Southeast and South Asia bordering China are also expected to show an increased distribution. The outward spread of this pest via sea transportation cannot be ignored. Hence, quarantine efforts should be concentrated in high-suitability regions determined in this study to protect against the occurrence of hosts that may contain A. suncei, thereby avoiding its long-distance spread. Long-term sentinel surveillance and control measures should be carried out as soon as A. suncei is detected, especially in regions with high suitability. Thus, our findings establish a theoretical foundation for quarantine and control measures targeting A. suncei.

Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752

AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.

Lu, K., M. Liu, K. Hu, Y. Liu, Y. He, H. Bai, Z. Du, and Y. Duan. 2024. Potential Global Distribution and Habitat Shift of Prunus subg. Amygdalus Under Current and Future Climate Change. Forests 15: 1848. https://doi.org/10.3390/f15111848

The genus of Prunus subg. Amygdalus are endangered Tertiary-relict plants that are an essential source of woody plant oil. In order to provide a theoretical basis for better protection and utilization of species in the Prunus subg. Amygdalus. This study collected global distribution information for six species within the Prunus subg. Amygdalus, along with data on 29 environmental and climatic factors. The Maximum Entropy (MaxEnt) model was used to simulate the globally suitable distribution areas for these species within the subgenus. The suitable results showed that the area under the test curve (AUC) values of the simulation results were more than 0.8, indicating that the simulation results have high accuracy. Temperature, precipitation, UV-B, and altitude were critical environmental factors affecting the distribution of each species in Prunus subg. Amygdalus. Currently, the distribution area of six species in this genus, from largest to smallest, is Prunus triloba (Lindl.) Ricker, Prunus tenella Batsch, Prunus amygdalus Batsch, Prunus pedunculata Maxim, Prunus mongolica Maxim and Prunus tangutica (Batal.) Korsh. The simulation results of distribution areas showed that under the ssp2.45 and ssp5.85 scenarios, the potential distribution areas of P. amygdalus, P. tangutica, and P. pedunculata all show a decreasing trend, while the distribution areas of P. mongolica and P. tenella, and P. triloba exhibit an increasing trend. The general distribution of P. amygdalus, P. mongolica, and P. tenella will trend to transfer in a northwest direction. P. tangutica and P. pedunculata were affected by other environmental factors (such as slope, altitude, and soil pH), and the distribution area has a tendency to move northeastward. The P. triloba moved to the southwest. The spatiotemporal distribution patterns of Prunus subg. Amygdalus can be used as a reference for forest management and to formulate species conservation strategies.

Kaushik, Y., and P. Arora. 2024. Investigating the sustainable energy generation potential of an invasive weed: Lantana camara. Environmental Science and Pollution Research 31: 62493–62509. https://doi.org/10.1007/s11356-024-35322-2

Lantana camara , one of the world’s top ten most invasive species, was initially cultivated for ornamental use. However, it spread uncontrollably across the fallow areas and agricultural lands, threatening approximately 44% of Indian forests. Its invasion disrupts ecosystems by suppressing nearby plant growth through allelopathy and poses toxicity risks to grazing ruminants. It significantly increases forest fire risk by adding large amounts of combustible biomass, particularly dried L. camara . Despite efforts to control it using mechanical, chemical, and biocontrol methods, the results have been largely unsatisfactory, with associated costs estimated at $18,000 per square kilometre. Considering these challenges, recent research explored the potential of L. camara as a bioenergy resource. The  L. camara  briquettes exhibit a heating value of approximately 20 MJ/kg with a low sulphur (0.5%), nitrogen (1%), and ash content (2%), making them suitable for decentralised energy production. Furthermore, bioethanol production from  L. camara  hydrolysate has shown promising results, yielding 0.33 g/g with  Pichia stipitis  and 0.47 g/g with Saccharomyces cerevisiae , which is comparable to other lignocellulosic feedstocks. Additionally, the gasification of L. camara using a downdraft gasifier produced syngas with a lower heating value (LHV) of 6.4 MJ/Nm 3 . These findings demonstrate that using L. camara for bioenergy production presents a dual solution, addressing the growing demand for renewable energy and managing invasive species. This review aims to critically evaluate the potential and challenges associated with the different energy production pathways for L. camara , highlighting its role in sustainable energy generation.

Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3

Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.

Noel, A., D. R. Schlaepfer, B. J. Butterfield, M. C. Swan, J. Norris, K. Hartwig, M. C. Duniway, and J. B. Bradford. 2024. Most Pinyon–Juniper Woodland Species Distributions Are Projected to Shrink Rather Than Shift Under Climate Change. Rangeland Ecology & Management. https://doi.org/10.1016/j.rama.2024.09.002

Pinyon–juniper (PJ) woodlands are among the most widespread ecosystems in rangelands of western North America, supporting diverse wildlife habitat, recreation, grazing, and cultural/spiritual enrichment. Anticipating future distribution shifts under changing climate will be critical to climate adaptation and conservation efforts in these ecosystems. Here, we evaluate drivers of PJ tree species’ distributions and project changes in response to future climate change. We developed species distribution models with dryland-focused predictors to project environmental suitability changes across the entirety of three pinyon and six juniper species ranges. We identify areas of robust suitability change by combining suitability projections from multiple emissions scenarios and time periods. PJ species’ suitabilities respond to many temperature and moisture covariates expected to change in the future. Projected responses among PJ species are highly variable, ranging from modest declines with concurrent gains for overall little net change to wide-ranging declines with no gains for overall range contractions. Environmental suitability is projected to decline broadly across the arid United States Southwest and remain relatively stable across the northern Great Basin and Colorado Plateau. Our results suggest unique responses of PJ species to future climate change. We found that species were projected to experience more losses than gains in suitability, for overall range shrinks rather than shifts. Land managers have the capacity to increase woodland resilience to drought, and our results can inform rangeland-wide management planning and conservation efforts in PJ woodlands.

Xu, L., Z. Song, T. Li, Z. Jin, B. Zhang, S. Du, S. Liao, et al. 2024. New insights into the phylogeny and infrageneric taxonomy of Saussurea based on hybrid capture phylogenomics (Hyb-Seq). Plant Diversity. https://doi.org/10.1016/j.pld.2024.10.003

Saussurea is one of the largest and most rapidly evolving genera within the Asteraceae, comprising approximately 520 species from the Northern Hemisphere. A comprehensive infrageneric classification, supported by robust phylogenetic trees and corroborated by morphological and other data, has not yet been published. For the first time, we recovered a well-resolved nuclear phylogeny of Saussurea consisting of four main clades, which was also supported by morphological data. Our analyses show that ancient hybridization is the most likely source of deep cytoplasmic-nuclear conflict in Saussurea, and a phylogeny based on nuclear data is more suitable than one based on chloroplast data for exploring the infrageneric classification of Saussurea. Based on the nuclear phylogeny obtained and morphological characters, we proposed a revised infrageneric taxonomy of Saussurea, which includes four subgenera and 13 sections. Specifically, 1) S. sect. Cincta, S. sect. Gymnocline, S. sect. Lagurostemon, and S. sect. Strictae were moved from S. subg. Saussurea to S. subg. Amphilaena, 2) S. sect. Pseudoeriocoryne was moved from S. subg. Eriocoryne to S. subg. Amphilaena, and 3) S. sect. Laguranthera was moved from S. subg. Saussurea to S. subg. Theodorea.

Li, X.-D., Y. Chen, C.-L. Zhang, J. Wang, X.-J. Song, X.-R. Zhang, Z.-H. Zhu, and G. Liu. 2024. Assessing the climatic niche changes and global invasion risk of Solanum elaeagnifolium in relation to human activities. Science of The Total Environment 954: 176723. https://doi.org/10.1016/j.scitotenv.2024.176723

As an invasive plant, Solanum elaeagnifolium has posed a serious threat to agriculture and natural ecosystems worldwide. In order to better manage and limit its spread, we established niche models by combining distribution information and climate data from the native and invasive ranges of S. elaeagnifolium to analyze its niche changes during its colonization. Additionally, we evaluated its global invasion risk. Our results showed that the distribution of S. elaeagnifolium is affected by temperature, precipitation, altitude, and human activities. Solanum elaeagnifolium exhibits different degrees of niche conservatism and niche shift in different invasion ranges.During the global invasion of S. elaeagnifolium, both the niche shift and conservatism were observed, however, niche shift was particularly significant due to the presence of unoccupied niches (niche unfilling). Solanum elaeagnifolium generally occupied a relatively stable niche. However, a notable expansion was observed primarily in Europe and China. In Australia and Africa, its niche largely remains a subset of its native niche. Compared to the niche observed in its native range, its realized niche in China and Europe has shifted toward lower temperature and higher precipitation levels. Conversely, in Africa, the niche has shifted toward lower precipitation levels, while in Australia, it has shifted toward higher temperature. Our model predicted that S. elaeagnifolium has high invasion potential in many countries and regions. The populations of S. elaeagnifolium in China and Africa have reached the adapted stage, while the populations in Australia and Europe are currently in the stabilization stage. In addition, our research suggests that the potential distribution of S. elaeagnifolium will expand further in the future as the climate warms. All in all, our study suggests that S. elaeagnifolium has high potential to invade globally. Due to its high invasive potential, global surveillance and preventive measures are necessary to address its spread.