Ciencia habilitada por datos de especímenes
White, S. V., and A. M. Royer. 2024. Floral colour variation across life history and geography in Mimulus ringens (Phrymaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad065
Floral and life history traits play important roles in plant speciation. The genus Mimulus is a model system for studying speciation. It includes examples of species in which floral colour facilitates isolation through pollinator shifts, as well as life history changes that result in temporal or ecogeographic isolation. We investigate the possibility that both floral colour and life history have shifted together in a recently described, genetically distinct group within the species Mimulus ringens. Using a large, range-wide citizen science dataset, we test for geographic trends in flower colour and flowering time. We combine this with greenhouse studies in populations of known life history to test for differences in flower colour with life history. We show that darker-flowered plants are more common at higher latitudes, that annual-like populations have darker flowers, and that flowering time varies with latitude only in the subset of populations that have lighter flowers. This suggests that annual-like populations (with the earlier flowering time typical of this life history) are restricted to the northern part of the species range and may have distinct trends in flowering date.
Gillespie, L. J., P. C. Sokoloff, G. A. Levin, J. Doubt, and R. T. McMullin. 2024. Vascular plant, bryophyte, and lichen biodiversity of Agguttinni Territorial Park, Baffin Island, Nunavut, Canada: an annotated species checklist of a new Arctic protected area. Check List 20: 279–443. https://doi.org/10.15560/20.2.279
Agguttinni Territorial Park is a large, newly established park on the east-central coast of Baffin Island in Nunavut, Canada. Previous knowledge of the plant and lichen biodiversity was limited and based mostly on collections made during the 1950 Baffin Island Expedition. We conducted a floristic inventory of the park in 2021 and re-examined previous collections. We recorded 141 species of vascular plants belonging to 25 families, 69 species of bryophytes in 27 families, and 93 species of lichens in 23 families. Most of the vascular plant and bryophyte species are new records for the park area, and some vascular plants, bryophytes, and lichens are newly reported for Baffin Island, Nunavut, or the Canadian Arctic or represent significant range extensions. Vascular plant species diversity varied greatly among localities, with inland valleys at the heads of fiords showing highest diversity and interior rocky barrens showing the lowest.
Ashraf, U., T. L. Morelli, A. B. Smith, and R. R. Hernandez. 2024. Aligning renewable energy expansion with climate-driven range shifts. Nature Climate Change 14: 242–246. https://doi.org/10.1038/s41558-024-01941-3
Fossil fuel dependence can be reduced, in part, by renewable energy expansion. Increasingly, renewable energy siting seeks to avoid significant impacts on biodiversity but rarely considers how species ranges will shift under climate change. Here we undertake a systematic literature review on the topic and overlay future renewable energy siting maps with the ranges of two threatened species under future climate scenarios to highlight this potential conflict. The authors conduct a systematic literature review on renewable energy expansion and biodiversity. Comparing renewable energy siting maps with the ranges of two threatened species under future climates, they highlight the potential conflict and need for consideration of climate-change-driven range shifts.
Belotti López de Medina, C. R. 2024. Diet breadth and biodiversity in the pre-hispanic South-Central Andes (Western South America) during the Holocene: An exploratory analysis and review. The Holocene. https://doi.org/10.1177/09596836241231446
This paper presents an exploratory study on the taxonomic diversity of pre-Hispanic archaeofaunas in the South-Central Andes (SCA; western South America) from the Pleistocene-Holocene boundary to the Late-Holocene. The SCA is a complex of diverse environments and has undergone distinct climate events for the last 13,000 years, such as the occurrence of warmer and drier conditions in the Middle-Holocene. The South-Central Andean area was part of the larger Andes interaction area, which was a primary center for animal and plant domestication and the emergence of agro-pastoralist economies. Since subsistence was key to these processes, the SCA provides a relevant case study on the interactions among environment, foodways and sociocultural evolution. Taxonomic diversity was used here as a proxy for diet breadth. A total of 268 archaeofaunal assemblages were sampled from the zooarchaeological literature. Reviewed variables included the cultural chronology and spatial coordinates of the assemblages, as well as the presence and abundance of taxa at the family rank. Taxonomic diversity covered two dimensions: composition (families present in each assemblage) and structure (quantitative relationships among taxa), which was measured through richness (NTAXA), ubiquity and relative abundance (NISP based rank-order). Despite the uneven distribution of samples, the analyses revealed the following trends: (1) a moderate relationship between NTAXA and distance from coastline for most of the Holocene; (2) a potential decrease in assemblage richness for coastal ecoregions during the Late-Holocene; and (3) a generalized increase in the relative abundance of Camelidae.
Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.
Prochazka, L. S., S. Alcantara, J. G. Rando, T. Vasconcelos, R. C. Pizzardo, and A. Nogueira. 2024. Resource availability and disturbance frequency shape evolution of plant life forms in Neotropical habitats. New Phytologist. https://doi.org/10.1111/nph.19601
Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention.We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches.Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource‐rich environments.Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource‐limited habitat and the other relying on reserves and root resprouting systems in resource‐abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low‐resource and high‐disturbance environments.
Ract, C., N. D. Burgess, L. Dinesen, P. Sumbi, I. Malugu, J. Latham, L. Anderson, et al. 2024. Nature Forest Reserves in Tanzania and their importance for conservation S. S. Romanach [ed.],. PLOS ONE 19: e0281408. https://doi.org/10.1371/journal.pone.0281408
Since 1997 Tanzania has undertaken a process to identify and declare a network of Nature Forest Reserves (NFRs) with high biodiversity values, from within its existing portfolio of national Forest Reserves, with 16 new NFRs declared since 2015. The current network of 22 gazetted NFRs covered 948,871 hectares in 2023. NFRs now cover a range of Tanzanian habitat types, including all main forest types—wet, seasonal, and dry—as well as wetlands and grasslands. NFRs contain at least 178 of Tanzania’s 242 endemic vertebrate species, of which at least 50% are threatened with extinction, and 553 Tanzanian endemic plant taxa (species, subspecies, and varieties), of which at least 50% are threatened. NFRs also support 41 single-site endemic vertebrate species and 76 single-site endemic plant taxa. Time series analysis of management effectiveness tracking tool (METT) data shows that NFR management effectiveness is increasing, especially where donor funds have been available. Improved management and investment have resulted in measurable reductions of some critical threats in NFRs. Still, ongoing challenges remain to fully contain issues of illegal logging, charcoal production, firewood, pole-cutting, illegal hunting and snaring of birds and mammals, fire, wildlife trade, and the unpredictable impacts of climate change. Increased tourism, diversified revenue generation and investment schemes, involving communities in management, and stepping up control measures for remaining threats are all required to create a network of economically self-sustaining NFRs able to conserve critical biodiversity values.
Neupane, A., B. Adhikari, and B. B. Shrestha. 2024. Cuphea carthagenensis (Jacquin) J.F. Macbride, Lythraceae: a newly naturalised species from eastern Nepal. Check List 20: 40–46. https://doi.org/10.15560/20.1.40
Cuphea carthagenensis (Jacquin) J.F. Macbride, a native of South America, is recorded for the first time from Mechinagar municipality of south‑eastern Nepal. This weed has already been in the neighboring north‑east region of India since the 1950s and might have recently spread into south‑eastern Nepal where it is colonizing riparian habitats. We provide a detailed taxonomic account, as well as the distribution, major habitat, and invasion status of C. carthagenensis.
Noori, S., A. Hofmann, D. Rödder, M. Husemann, and H. Rajaei. 2024. A window to the future: effects of climate change on the distribution patterns of Iranian Zygaenidae and their host plants. Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02760-2
Climate change has been suggested as an important human-induced driver for the ongoing sixth mass extinction. As a common response to climate change, and particularly global warming, species move toward higher latitudes or shift uphill. Furthermore, rapid climate change impacts the biotic interactions of species, particularly in the case of Zygaenid moths which exhibit high specialization in both habitat and host plant preferences. Iranian Zygaenidae are relatively well-known and represent a unique fauna with a high endemism rate (46%) in the whole Palearctic; as such they are a good model group to study the impact of climate change on future distributions. In this study, we used species distribution models (SDMs) and ensembles of small models (ESMs) to investigate the impact of climate change on the future distribution of endemic and non-endemic species of zygaenids, as well as their larval host plants. Three different climate scenarios were applied to forecast the probable responses of the species to different climate change intensities. Our results suggest that the central and southern parts of the country will be impacted profoundly by climate change compared to the northern regions. Beyond this, most endemic species will experience an altitudinal shift from their current range, while non-endemic species may move towards higher latitudes. Considering that the regions with higher diversity of zygaenids are limited to mountainous areas, mainly within the Irano-Anatolian biodiversity hotspot, the identification of their local high diversity regions for conservation practices has a high priority.
Barrientos-Díaz, O., M. R. Báez-Lizarazo, F. Enderle, A. L. A. Segatto, M. Reginato, and A. C. Turchetto-Zolet. 2024. The Atlantic forest is a potentially climatic suitable habitat for four Neotropical Myrtaceae species through time. Ecological Informatics 80: 102490. https://doi.org/10.1016/j.ecoinf.2024.102490
Myrtaceae is one of the most species-rich botanical families and is a critical floristic component in regions with high diversity, such as the Atlantic Forest and Cerrado. In the Neotropical region, Myrteae is the main tribe of Myrtaceae and includes the most diverse genera Eugenia, Myrcia, Psidium, Myrceugenia, and Campomanesia. Here, we investigated the climatic suitability selected Myrteae species - Campomanesia guazumifolia, C. xanthocarpa, Eugenia pyriformis, and Psidium cattleyanum - across South America. This study spans the present day, three historical periods, and two future climate change scenarios. Our modeling analysis (ENSEMBLE) included environmental variables applied at the times evaluated. Our results suggest that temperature seasonality and precipitation in the driest month were the variables that most influenced climate suitability in the species. The Atlantic Forest lato sensu is a potentially climate suitable habitat for these four species over time, which matches the center of diversification and richness of Myrtaceae, in regions where they coexist and share habitats sympatrically. Historical glaciation events have influenced the retraction and expansion of species distribution, ultimately contributing to their current coexistence in select neotropical ecoregions. Our projections for the future indicate climate suitable habitats in areas similar to present models despite the different effects of climate change. The Atlantic Forest is the key to maintaining Myrteae biodiversity over time. Therefore, it is necessary to combine other approaches (e.g., evolutionary, ecological, and genetic studies) to deeply understand the evolutionary history of this region, its protection, and the maintenance of the biodiversity it harbors.