Ciencia habilitada por datos de especímenes

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Raggi, L., C. Zucchini, E. Sayde, D. Gigante, and V. Negri. 2024. Priority areas for the establishment of genetic reserves to actively protect key crop wild relative species in Italy. Global Ecology and Conservation 50: e02836. https://doi.org/10.1016/j.gecco.2024.e02836

Crop Wild Relatives (CWR) are wild plant taxa genetically close to a crop. Being a precious source of genetic variability and of traits for crop improvement, CWR have a high socio-economic value and are identified among the main plant genetic resources. Alarming enough, the inter- and intraspecific diversity, as well as their habitat diversity, is under threat of irremediable loss. Italy is the second richest country in Europe in terms of plant species number; applying the taxon group concept 5712 have been recently identified as CWR. The aims of the present research are to identify the best sites for: i) the institution of genetic reserves to actively protect CWR species of the key crop genera as Allium, Brassica and Triticum and ii) performing new collection missions to reach adequate ex situ conservation of target species. Georeferenced data were retrieved from different online databases. CAPFITOGEN tools were initially used to develop an ecogeographic land characterisation map (ELC) of Italy. Geographical distribution data were assembled for 379 populations of 18 CWR taxa. Results of the complementarity analysis showed that 10 protected areas provide coverage of the 46.4% of the target conservation units and include 66.7% of the priority CWR taxa investigated. Alarming enough, only 7.4% of the 379 populations are currently conserved ex situ; among the 18 ecogeographic land characterisation categories only 3 are covered by ex situ conservation. This is the first study where most suitable protected areas for the institution of genetic reserves are proposed for Italy for the protection of multiple CWR taxa of key genera; this is relevant also considering the global value of many of the related crop such as different wheat species, cabbages, rape, garlic and onion. Being already dedicated to habitat and species conservation, the identified sites are optimal candidates for the institution of genetic reserves. Results will hopefully also guide new collecting missions that are urgently needed to strength ex situ conservation of such precious genetic resources.

Noori, S., A. Hofmann, D. Rödder, M. Husemann, and H. Rajaei. 2024. A window to the future: effects of climate change on the distribution patterns of Iranian Zygaenidae and their host plants. Biodiversity and Conservation. https://doi.org/10.1007/s10531-023-02760-2

Climate change has been suggested as an important human-induced driver for the ongoing sixth mass extinction. As a common response to climate change, and particularly global warming, species move toward higher latitudes or shift uphill. Furthermore, rapid climate change impacts the biotic interactions of species, particularly in the case of Zygaenid moths which exhibit high specialization in both habitat and host plant preferences. Iranian Zygaenidae are relatively well-known and represent a unique fauna with a high endemism rate (46%) in the whole Palearctic; as such they are a good model group to study the impact of climate change on future distributions. In this study, we used species distribution models (SDMs) and ensembles of small models (ESMs) to investigate the impact of climate change on the future distribution of endemic and non-endemic species of zygaenids, as well as their larval host plants. Three different climate scenarios were applied to forecast the probable responses of the species to different climate change intensities. Our results suggest that the central and southern parts of the country will be impacted profoundly by climate change compared to the northern regions. Beyond this, most endemic species will experience an altitudinal shift from their current range, while non-endemic species may move towards higher latitudes. Considering that the regions with higher diversity of zygaenids are limited to mountainous areas, mainly within the Irano-Anatolian biodiversity hotspot, the identification of their local high diversity regions for conservation practices has a high priority.

Suicmez, B., and M. Avci. 2023. Distribution patterns of Quercus ilex from the last interglacial period to the future by ecological niche modeling. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10606

The plants' geographic distribution is affected by natural or human‐induced climate change. Numerous studies at both the global and regional levels currently focus on the potential changes in plant distribution areas. Ecological niche modeling can help predict the likely distribution of species according to environmental variables under different climate scenarios. In this study, we predicted the potential geographic distributions of Quercus ilex L. (holm oak), a keystone species of the Mediterranean ecosystem, for the Last Interglacial period (LIG: ~130 Ka), the Last Glacial Maximum (LGM: ~22 Ka), mid‐Holocene (MH: ~6 Ka), and future climate scenarios (Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios) for 2050–2070 obtained from CCSM4 and MIROC‐ESM global climate scenarios respectively. The models were produced with algorithms from the R‐package “biomod2” and assessed by AUC of the receiver operating characteristic plot and true skill statistics. Aside from BIOCLIM (SRE), all model algorithms performed similarly and produced projections that are supported by good evaluation scores, although random forest (RF) slightly outperformed all the others. Additionally, distribution maps generated for the past period were validated through a comparison with pollen data acquired from the Neotoma Pollen Database. The results revealed that southern areas of the Mediterranean Basin, particularly coastal regions, served as long‐term refugia for Q. ilex, which was supported by fossil pollen data. Furthermore, the models suggest long‐term refugia role for Anatolia and we argue that Anatolia may have served as a founding population for the species. Future climate scenarios indicated that Q. ilex distribution varied by region, with some areas experiencing range contractions and others range expands. This study provides significant insights into the vulnerability of the Q. ilex to future climate change in the Mediterranean ecosystem and highlights the crucial role of Anatolia in the species' historical distribution.

Jin, D., Q. Yuan, X. Dai, G. Kozlowski, and Y. Song. 2023. Enhanced precipitation has driven the evolution of subtropical evergreen broad‐leaved forests in eastern China since the early Miocene: Evidence from ring‐cupped oaks. Journal of Systematics and Evolution. https://doi.org/10.1111/jse.13022

Subtropical evergreen broad‐leaved forest (EBLF) is the predominant vegetation type in eastern China. However, the majority of the region it covers in eastern China was an arid area during the Paleogene. The temporal history and essential factors involved in the evolution of subtropical EBLFs in eastern China remain enigmatic. Here we report on the niche evolution of Quercus section Cyclobalanopsis, which appeared in south China and Japan during the Eocene and became a dominant component of subtropical EBLFs since the Miocene in eastern Asia, using integrative analysis of occurrences, climate data and a dated phylogeny of 35 species in Cyclobalanopsis. Species within clades Cyclobalanoides, Lamellosa, and Helferiana mainly exist in the Himalaya–Hengduan region, adapting to a plateau climate, while species within the other clades mainly live in eastern China under the control of the East Asian monsoon. Reconstructed history showed that significant divergence of climatic tolerance in Cyclobalanopsis began around 19 million years ago (Ma) in the early Miocene. Simultaneously, disparities in precipitation of wettest/warmest quarter and annual precipitation were markedly enhanced in Cyclobalanopsis, especially in the recent eastern clades. During the Miocene, the marked radiation of Cyclobalanopsis and many other dominant taxa of subtropical EBLFs strongly suggest the rapid formation and expansion of subtropical EBLFs in eastern China. Our research highlights that the intensification of the East Asian monsoon and subsequent occupation of new niches by the ancient clades already present in the south may have jointly promoted the formation of subtropical EBLFs in eastern China since the early Miocene.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Benson, C. W., M. R. Sheltra, P. J. Maughan, E. N. Jellen, M. D. Robbins, B. S. Bushman, E. L. Patterson, et al. 2023. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 24. https://doi.org/10.1186/s12864-023-09456-5

Background Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua’s diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua’s evolutionary novelty. Results We find that the diploids diverged from their common ancestor 5.5 – 6.3 million years ago and hybridized to form P. annua  ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua’s B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. Conclusions The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding .

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Kolanowska, M. 2023. Loss of fungal symbionts and changes in pollinator availability caused by climate change will affect the distribution and survival chances of myco-heterotrophic orchid species. Scientific Reports 13. https://doi.org/10.1038/s41598-023-33856-y

The first comprehensive species distribution models for orchid, its fungal symbionts and pollinator are presented. To evaluate impact of global warming on these organisms three different projections and four various climate change scenarios were analysed. The niche modelling was based on presence-only records of Limodorum abortivum , two species of Russula and three insects pollinating orchid ( Anthophora affinis, Bombus terrestris, Rhodanthidium septemdentatum ). Two sets of orchid predictions were examined—the first one included only climatic data and the second one was based on climate data and data on future distribution of orchid fungal symbionts. Overall, a poleward range shift is predicted to occur as a result of climate change and apparently global warming will be favorable for L. abortivum and its potential geographical range will expand. However, due to the negative effect of global warming on fungal symbionts of L. abortivum , the actual extension of the suitable niches of the orchid will be much limited. Considering future possibility of cross-pollination, the availability of A. affinis for L. abortivum will decrease and this bee will be available in the worst case scenarios only for 21% of orchid populations. On the other hand, the overlap of orchid and the buff-tailed bumblebee will increase and as much as 86.5% of plant populations will be located within B. terrestris potential range. Also the availability of R. septemdentatum will be higher than currently observed in almost all analysed climate change projections. This study showed the importance of inclusion of ecological factors in species distribution models as the climate data itself are not enough to estimate the future distribution of plant species. Moreover, the availability of pollen vectors which is crucial for long-term survival of orchid populations should be analysed in context of climate changes.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.