Ciencia habilitada por datos de especímenes

Gachambi Mwangi, J., J. Haggar, S. Mohammed, T. Santika, and K. Mustapha Umar. 2023. The ecology, distribution, and anthropogenic threats of multipurpose hemi-parasitic plant Osyris lanceolata. Journal for Nature Conservation 76: 126478. https://doi.org/10.1016/j.jnc.2023.126478

Osyris lanceolata Hochst. & Steud. ex A. DC. is a multipurpose plant with high socioeconomic and cultural values. It is endangered in the biogeographical region of eastern Africa, but of less concern in other regions where it occurs. The few natural populations remaining in the endangered sites continue to encounter many threats, and this has raised concerns about its long-term sustainability. Yet, existing knowledge about the ecology and distribution of the plant is scarce to inform strategies for the conservation and sustainable management of the species. In this study, we conducted a scoping review of the available literature on current knowledge about the plant. We recapitulated existing knowledge about the abiotic and biotic factors influencing the contemporary distribution of the plant, the anthropogenic threats, and existing conservation efforts. Based on the limited studies we reviewed, we identified that the plant prefers specific habitats (hilly areas and rocky outcrops), frequently parasitizes Fabaceae but can parasitize plants from a wide range of countries, have inadequate ex-situ propagation protocols which present issues for the survival of the species. Overharvesting from the wild driven by demand from regional and global markets poses further threats to the existing natural populations, especially in eastern Africa. A combination of ecological, social, and trade-related conservation measures can be envisioned to help improve the plant’s persistence. These include, but are not limited to, a better understanding of the species ecology to inform conservation planning, monitoring of trade flow and improve transnational environmental laws and cooperation among countries to prevent species smuggling.

Ripley, B. S., S. L. Raubenheimer, L. Perumal, M. Anderson, E. Mostert, B. S. Kgope, G. F. Midgley, and K. J. Simpson. 2022. CO 2 ‐fertilisation enhances resilience to browsing in the recruitment phase of an encroaching savanna tree. Functional Ecology. https://doi.org/10.1111/1365-2435.14215

CO2‐fertilisation is implicated in the widespread and significant woody encroachment of savannas due to CO2‐stimulated increases in belowground reserves that enhance sapling regrowth after fire. However, the effect of CO2 concentration ([CO2]) on tree responses to the other major disturbance in savannas, herbivory, is poorly understood. Herbivory‐responses cannot be predicted from fire‐responses, as herbivore effects occur earlier during establishment and are moderated by plant palatability and defence rather than belowground carbon accumulation.

Hidalgo-Triana, N., F. Casimiro-Soriguer Solanas, A. Solakis Tena, A. V. Pérez-Latorre, and J. García-Sánchez. 2022. Melinis repens (Willd.) Zizka subsp. repens (Poaceae) in Europe: distribution, ecology and potential invasion. Botany Letters 169: 390–399. https://doi.org/10.1080/23818107.2022.2080111

Melinis repens subsp. repens is an annual herb native to Africa and southwestern Asia. In 2008, this species was detected growing in road verges and showing a reduced occupancy area of 6 km2 in a natural area of the southern Iberian Peninsula in the province of Malaga (Andalusia, Spain). The rest of the existing European records of this species comes from the Czech Republic, the Italian Peninsula, and Great Britain and can be considered casual. Furthermore, this species has become naturalised in Sardinia. The aim of this work is to study the invasion status, habitats, potential impacts, invasive behaviour, and pathways of introduction of Melinis repens subsp. repens in the southern Iberian Peninsula (Spain) to contribute to the control of this species. This species was most probably introduced into Europe for ornamental, fodder, or slope stabilization purposes. Our field work revealed this species has become naturalised in several habitats of Malaga and Granada provinces (Andalusia) occupying an area of 263 km2 in 2021. It behaves as a pioneer species that colonizes disturbed road margins and occurs in the same habitat as Cenchrus setaceus. Melinis repens subsp. repens can become dominant in natural EUNIS habitats and can also occupy cultivated areas. Because of the high occupancy area detected, and because the species has been assigned to the European Union List of Invasive Alien Plants based on the EPPO prioritization process, this plant should be considered the object of a control programme and its use should be legally prohibited in Spain, and more largely in European Mediterranean areas.

Odorico, D., E. Nicosia, C. Datizua, C. Langa, R. Raiva, J. Souane, S. Nhalungo, et al. 2022. An updated checklist of Mozambique’s vascular plants. PhytoKeys 189: 61–80. https://doi.org/10.3897/phytokeys.189.75321

An updated checklist of Mozambique’s vascular plants is presented. It was compiled referring to several information sources such as existing literature, relevant online databases and herbaria collections. The checklist includes 7,099 taxa (5,957 species, 605 subspecies, 537 varieties), belonging to …

Meller, P., M. Stellmes, A. Fidelis, and M. Finckh. 2022. Correlates of geoxyle diversity in Afrotropical grasslands. Journal of Biogeography 49: 339–352. https://doi.org/10.1111/jbi.14305

Aim: Tropical old-growth grasslands are increasingly acknowledged as biodiverse ecosystems, but they are understudied in many aspects. Geoxyle species are a key component in many of these ecosystems, their belowground storage organs and bud banks are functionally diverse and contribute to the grassl…

Cahen, D., J. Rickenback, and T. M. A. Utteridge. 2021. A revision of Ziziphus (Rhamnaceae) in Borneo. Kew Bulletin 76: 767–804. https://doi.org/10.1007/s12225-021-09970-3

The genus Ziziphus (Rhamnaceae) is revised for Borneo. 13 species are recognised using morphological evidence, including three new endemic species: Ziziphus cuspidata, Z. domatiata and Z. puberula. Borneo is therefore the island with the greatest known diversity of Ziziphus species. The area surroun…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Rhodes, A. C., R. M. Plowes, J. A. Goolsby, J. F. Gaskin, B. Musyoka, P.-A. Calatayud, M. Cristofaro, et al. 2021. The dilemma of Guinea grass (Megathyrsus maximus): a valued pasture grass and a highly invasive species. Biological Invasions 23: 3653–3669. https://doi.org/10.1007/s10530-021-02607-3

On a global scale, invasive grasses threaten biodiversity and ecosystem function. Nevertheless, the importation of forage grasses is a significant economic force driven by globalization. Pastureland and rangeland are of critical economic and ecological importance, but novel grass species may lead to…

Iannella, M., P. D’Alessandro, W. De Simone, and M. Biondi. 2021. Habitat Specificity, Host Plants and Areas of Endemism for the Genera-Group Blepharida s.l. in the Afrotropical Region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects 12: 299. https://doi.org/10.3390/insects12040299

The genus Calotheca Heyden (Chrysomelidae) is mainly distributed in the eastern and southern parts of sub-Saharan Africa, with some extensions northward, while Blepharidina Bechyné occurs in the intertropical zone of Africa, with two subgenera, Blepharidina s. str. and Blepharidina(Afroblepharida) B…

Cross, A. T., T. A. Krueger, P. M. Gonella, A. S. Robinson, and A. S. Fleischmann. 2020. Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation 24: e01272. https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…