Ciencia habilitada por datos de especímenes
Botero‐Cañola, S., C. Torhorst, N. Canino, L. Beati, K. C. O’Hara, A. M. James, and S. M. Wisely. 2024. Integrating Systematic Surveys With Historical Data to Model the Distribution of Ornithodoros turicata americanus, a Vector of Epidemiological Concern in North America. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70547
Globally, vector‐borne diseases are increasing in distribution and frequency, affecting humans, domestic animals, and wildlife. Science‐based management and prevention of these diseases requires a sound understanding of the distribution and environmental requirements of the vectors and hosts involved in disease transmission. Integrated Species Distribution Models (ISDM) account for diverse data types through hierarchical modeling and represent a significant advancement in species distribution modeling. We assessed the distribution of the soft tick subspecies Ornithodoros turicata americanus. This tick species is a potential vector of African swine fever virus (ASFV), a pathogen responsible for an ongoing global epizootic that threatens agroindustry worldwide. Given the novelty of this method, we compared the results to a conventional Maxent SDM and validated the results through data partitioning. Our input for the model consisted of systematically collected detection data from 591 sampled field sites and 12 historical species records, as well as four variables describing climatic and soil characteristics. We found that a combination of climatic variables describing seasonality and temperature extremes, along with the amount of sand in the soil, determined the predicted intensity of occurrence of this tick species. When projected in geographic space, this distribution model predicted 62% of Florida as suitable habitat for this tick species. The ISDM presented a higher TSS and AUC than the Maxent conventional model, while sensitivity was similar between both models. Our case example shows the utility of ISDMs in disease ecology studies and highlights the broad range of geographic suitability for this important disease vector. These results provide important foundational information to inform future risk assessment work for tick‐borne relapsing fever surveillance and potential ASF introduction and maintenance in the United States.
Wu, D., C. Liu, F. S. Caron, Y. Luo, M. R. Pie, M. Yu, P. Eggleton, and C. Chu. 2024. Habitat fragmentation drives pest termite risk in humid, but not arid, biomes. One Earth 7: 2049–2062. https://doi.org/10.1016/j.oneear.2024.10.003
Predicting global change effects poses significant challenges due to the intricate interplay between climate change and anthropogenic stressors in shaping ecological communities and their function, such as pest outbreak risk. Termites are ecosystem engineers, yet some pest species are causing worldwide economic losses. While habitat fragmentation seems to drive pest-dominated termite communities, its interaction with climate change effect remains unknown. We test whether climate and habitat fragmentation interactively alter interspecific competition that may limit pest termite risk. Leveraging global termite co-occurrence including 280 pest species, we found that competitively superior termite species (e.g., large bodied) increased in large and continuous habitats solely at high precipitation. While competitive species suppressed pest species globally, habitat fragmentation drove pest termite risk only in humid biomes. Unfortunately, hu- mid tropics have experienced vast forest fragmentation and rainfall reduction over the past decades. These stressors, if not stopped, may drive pest termite risk, potentially via competitive release.
Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3
Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.
Giulian, J., B. N. Danforth, and J. G. Kueneman. 2024. A Large Aggregation of Melissodes bimaculatus (Hymenoptera: Apidae) Offers Perspectives on Gregarious Nesting and Pollination Services. Northeastern Naturalist 31. https://doi.org/10.1656/045.031.0314
From the largest nesting aggregation ever recorded for the genus Melissodes, we took diverse bionomic measurements of Melissodes bimaculatus (Two-spotted Longhorn Bee). Our results show a protandrous reproductive strategy occurring from July through August in New York. We observed parasitism by the kleptoparasitic bee Triepeolus simplex as well as nest-architecture modifications to ease this burden that support the selfish-herd hypothesis. In this population, we also found a proclivity for grass (Poaceae) pollen, a previously undocumented diet preference for Two-spotted Longhorn Bees. We further showed that this bee species has widespread climatically suitable habitat, with expected range expansion under future climate conditions. Altogether, our results offer novel insights into the ecology of theTwo-spotted Longhorn Bee and its gregarious nesting behavior.
Parys, K., K. Huntzinger, A. Seshadri, and T. Rashid. 2024. First record of <i>Xenoglossa </i>(<i>Cemolobus</i>) <i>ipomoeae </i>(Robertson, 1891) in Mississippi: Distribution, ecology, and conservation implications. Journal of Melittology. https://doi.org/10.17161/jom.vi120.22418
The first record of Xenoglossa (Cemolobus) ipomoeae (Robertson, 1891) (Apidae: Eucerini) for the state of Mississippi, USA is reported. This species is a rarely encountered specialist bee that is known to forage on Ipomoea pandurata (L.) G.F.W. Mey (Convolvulaceae), potentially along with other closely related plants in the genus Ipomoea. A single female was collected in Bolivar County during 2017 that a represents a significant southwestern range expansion for this bee species.
Radbouchoom, S., M. D. delos Angeles, T. Phutthai, and H. Schneider. 2024. Towards zero extinction—A case study focusing on the plant genus Begonia in Thailand. Integrative Conservation. https://doi.org/10.1002/inc3.67
Plant species with small habitat ranges and specific edaphic requirements are highly vulnerable to extinction and thus require enhanced attention in biodiversity conservation. This study was designed to explore the challenges of protecting such plant species by evaluating the in situ and ex situ conservation capacities available for Thailand's species of the mega‐diverse plant genus Begonia L. A comprehensive assessment of occurrence records across the country was conducted to evaluate the spatial distribution of Begonia diversity in Thailand, identify biodiversity hotspots, assess the extinction threats faced by the 60 Begonia species known in the country, and identify existing conservation capacities and potential gaps. The results show that 78% of Begonia species in Thailand are vulnerable to extinction, with the Northern floristic region identified as both a Begonia species hotspot and a region with major conservation gaps. While in situ conservation efforts have been successful in covering over 88% of the species, they have failed to provide the protection required to achieve zero extinction. Ex situ conservation capacities are poorly developed, with only 13% of species present in botanical gardens, and no seed banking or other related activities have been initiated. This evaluation presents a sharply contrasting message: on one hand, Thailand has assembled substantial capacities to protect these plants through established national parks and other protected areas, but on the other hand, essential capacities are still lacking to render the zero extinction target achievable. We advocate for the implementation of a multi‐component conservation strategy to enable Thailand to move towards zero species extinction, even for plant species with narrow habitat ranges and high edaphic specialisation.
Schmidt, R. J., J. M. Johnston, and L. Struwe. 2024. Waif to Invasive: the Transatlantic Migration and Establishment of Grasses Introduced to North America with Pre-Twentieth-Century Ship Ballast. International Journal of Plant Sciences 185: 441–452. https://doi.org/10.1086/730539
Premise of research. Little is known about the establishment success of grasses after their introduction into new areas. Using herbarium data, we investigated temporospatial patterns in the survival, establishment, and spread of grasses introduced to eastern North America through solid ballast deposition from the pre-twentieth-century shipping trade. Methodology. We identified 95 grass species introduced to New Jersey via ballast deposition and used 2729 digitized and georeferenced plant specimens from 63 herbaria to quantify their establishment and dispersion. Anselin Local Moran’s I measure of local spatial autocorrelation revealed the earliest and most recent areas of invasion by ballast grasses irrespective of collection intensity. Species’ native ranges were used to evaluate the differential establishment and dispersion of species from different biogeographic realms. Pivotal results. Of all the species (95), 51% did not survive after ballast deposition ended (waifs), 8% died out shortly thereafter (short-term), and 41% became established in New Jersey. Of the established species, 41% are widespread (established-widespread), and 59% are still primarily found near shipping ports and railroads (established–limited spread). These species are mostly native to the Palearctic (77%; 44% to the Mediterranean and 33% to northern Europe), followed by the Neotropics (11%), the Afrotropics (10%), and the southeastern United States (4%). The establishment proportion for species native to more than one biogeographic region (72%) was four times greater than that for species native to a single region (18%). Additionally, 95% of established species, including all established-widespread species, are native to the Eastern Hemisphere. Conclusions. We present the first analysis of the establishment proportion for a large set of grasses introduced through a single vector to a single area. We show the impact of biogeographic origin on the establishment proportion of introduced grasses and highlight the utility of herbarium collections for studying nonnative species’ history.
Mu, J., Z. Li, Q. Lu, H. Yu, C. Hu, Y. Mu, and J. Qu. 2024. Overlooked drivers of the greenhouse effect: The nutrient-methane nexus mediated by submerged macrophytes. Water Research 266: 122316. https://doi.org/10.1016/j.watres.2024.122316
Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions. A refined dynamic chamber method was utilized to concurrently collect and quantify methane emission fluxes arising from ebullition and diffusion processes. Significant correlations were found between methane flux and variations in the physiological activities of V. nantas by the fluorescence imaging system. Our results show that exceeding tolerance thresholds of ammonia in the water significantly interfered with the photosynthetic systems in submerged leaves and the radial oxygen loss in adventitious roots. The recovery process of V. natans accelerated the consumption of dissolved oxygen, leading to increase in the populations of methanogen (153.3 % increase of mcrA genes) and subsequently elevating CH4 emission fluxes (23.7 %) under high nutrient concentrations. Conversely, V. natans increased the available organic carbon under low nutrient conditions by radial oxygen loss, further increasing CH4 emission fluxes (94.7 %). Quantitative genetic and modeling analyses revealed that plant restoration processes drive ecological niche differentiation of methanogenic and methane oxidation microorganisms, affecting methane release fluxes within the restored area. The speciation process of V. natans is incapable of simultaneously meeting improved water purification and reduced methane emissions goals.
Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
Vélez, D., and F. Vivallo. 2024. Key areas for conserving and sustainably using oil-collecting bees (Apidae: Centridini, Tapinotaspidini, Tetrapediini) in the Americas. Journal of Insect Conservation. https://doi.org/10.1007/s10841-024-00620-0
The solitary oil-collecting bees of the tribes Centridini, Tapinotaspidini, and Tetrapediini inhabit areas from the southern part of the Nearctic Region through the Patagonian in southern South America, including the Caribbean. These bees are morphologically and behaviorally specialized in collecting oils as a reward from specialized floral glandular structures present in oil-producer plants. Oil-producer plants and oil-collecting bees have a mutualistic relationship in which the latter potentially pollinate the formers while collecting oils from their flowers. The main objective of this work is to infer the species richness and the key areas for conservation, research, and sustainable use of oil-collecting bees of the tribes Centridini, Tapinotaspidini, and Tetrapediini in the Americas. We collected occurrence records for 528 species of oil-collecting bees and estimated the species richness for each tribe and genus. In total, we estimated 664 species across the three mentioned tribes. With that baseline information, we created models of the richness and rarity patterns of the entire group of species and each tribe as a criterion to highlight key areas, along with richness and rarity centers for the American oil-collecting bees. We identified several critical areas that can be prioritized for conservation and research projects, including territories in Panama, Costa Rica, the Central and Northern Andes, the Amazon basin, and the biogeographic provinces of Cerrado, Atlantic Forest, Pampean, and Chacoan. Here we provide crucial information on key diversity areas for oil-collecting bees across the Americas. This information can be used for the conservation, research, and sustainable use of this important group of insect pollinators.