Ciencia habilitada por datos de especímenes
Uehira, K., and Y. Shimono. 2024. Evaluation of climate conditions and ecological traits that limit the distribution expansion of alien Lolium rigidum in Japan. NeoBiota 96: 89–104. https://doi.org/10.3897/neobiota.96.122752
AbstractInvasive alien plants cause severe global problems; therefore, determining the factors that lead to the success or failure of invasion is a critical question in the field of invasion ecology. In this study, we aimed to determine the factors underlying differences in the distribution range of alien plants in Japan by investigating why Loliummultiflorum thrives in a wide range of habitats while L.rigidum is mainly distributed on sandy beaches. We initially evaluated environmental niche suitability through species distribution modelling and subsequently examined whether species traits influence the differences in range expansion between the two species. We used MaxEnt modelling to identify potential environmental niches for both species. The analysis revealed that L.rigidum was considerably less suited to the Japanese climate compared to L.multiflorum, with high summer precipitation in Japan identified as one of the climatic factors limiting the distribution of L.rigidum. Given that these winter annual plants remain dormant as seeds during summer, in subsequent experiments, we buried seeds in paddy field soil and sandy beach sand during summer and evaluated their survival rate in autumn. The survival rate of L.rigidum seeds was significantly lower than that of L.multiflorum, particularly in paddy soil. Factors contributing to seed mortality may include the decay or early germination of L.rigidum seeds under Japan’s high rainfall conditions. This study emphasises the importance of considering local environmental factors alongside climate niche modelling in the risk assessment of invasive species. Moreover, the integration of species distribution modelling for large-scale evaluations and manipulation experiments for fine-scale assessments proved effective in identifying climatic conditions and species traits influencing the success or failure of alien species invasion.
Bradshaw, C. D., D. L. Hemming, T. Mona, W. Thurston, M. K. Seier, D. P. Hodson, J. W. Smith, et al. 2024. Transmission pathways for the stem rust pathogen into Central and East Asia and the role of the alternate host, barberry. Environmental Research Letters 19: 114097. https://doi.org/10.1088/1748-9326/ad7ee3
Abstract After many decades of effective control of stem rust caused by the Puccinia graminis f.sp. tritici, (hereafter Pgt) the reported emergence of race TTKSK/Ug99 of Pgt in Uganda reignited concerns about epidemics worldwide because ∼90% of world wheat cultivars had no resistance to the new race. Since it was initially detected in Uganda in 1998, Ug99 variants have now been identified in thirteen countries in Africa and the Middle East. Stem rust has been a major problem in the past, and concern is increasing about the risk of return to Central and East Asia. Whilst control programs in North America and Europe relied on the use of resistant cultivars in combination with eradication of barberry (Berberis spp.), the alternate host required for the stem rust pathogen to complete its full lifecycle, the focus in East Asia was principally on the use of resistant wheat cultivars. Here, we investigate potential airborne transmission pathways for stem rust outbreaks in the Middle East to reach East Asia using an integrated modelling framework combining estimates of fungal spore deposition from an atmospheric dispersion model, environmental suitability for spore germination, and crop calendar information. We consider the role of mountain ranges in restricting transmission pathways, and we incorporate a representation of a generic barberry species into the lifecycle. We find viable transmission pathways to East Asia from the Middle East to the north via Central Asia and to the south via South Asia and that an initial infection in the Middle East could persist in East Asia for up to three years due to the presence of the alternate host. Our results indicate the need for further assessment of barberry species distributions in East Asia and appropriate methods for targeted surveillance and mitigation strategies should stem rust incidence increase in the Middle East region.
Li, X.-D., Y. Chen, C.-L. Zhang, J. Wang, X.-J. Song, X.-R. Zhang, Z.-H. Zhu, and G. Liu. 2024. Assessing the climatic niche changes and global invasion risk of Solanum elaeagnifolium in relation to human activities. Science of The Total Environment 954: 176723. https://doi.org/10.1016/j.scitotenv.2024.176723
As an invasive plant, Solanum elaeagnifolium has posed a serious threat to agriculture and natural ecosystems worldwide. In order to better manage and limit its spread, we established niche models by combining distribution information and climate data from the native and invasive ranges of S. elaeagnifolium to analyze its niche changes during its colonization. Additionally, we evaluated its global invasion risk. Our results showed that the distribution of S. elaeagnifolium is affected by temperature, precipitation, altitude, and human activities. Solanum elaeagnifolium exhibits different degrees of niche conservatism and niche shift in different invasion ranges.During the global invasion of S. elaeagnifolium, both the niche shift and conservatism were observed, however, niche shift was particularly significant due to the presence of unoccupied niches (niche unfilling). Solanum elaeagnifolium generally occupied a relatively stable niche. However, a notable expansion was observed primarily in Europe and China. In Australia and Africa, its niche largely remains a subset of its native niche. Compared to the niche observed in its native range, its realized niche in China and Europe has shifted toward lower temperature and higher precipitation levels. Conversely, in Africa, the niche has shifted toward lower precipitation levels, while in Australia, it has shifted toward higher temperature. Our model predicted that S. elaeagnifolium has high invasion potential in many countries and regions. The populations of S. elaeagnifolium in China and Africa have reached the adapted stage, while the populations in Australia and Europe are currently in the stabilization stage. In addition, our research suggests that the potential distribution of S. elaeagnifolium will expand further in the future as the climate warms. All in all, our study suggests that S. elaeagnifolium has high potential to invade globally. Due to its high invasive potential, global surveillance and preventive measures are necessary to address its spread.
Aagesen, L., D. L. Salariato, M. A. Scataglini, J. M. Acosta, S. S. Denham, and C. Delfini. 2024. Spatial phylogenetics of grasses in the Southern Cone provides insights into ecology and evolution of the family in South America. Journal of Systematics and Evolution 62: 1177–1192. https://doi.org/10.1111/jse.13067
In this study, we explored the distributions of grass genera in the Southern Cone (SC) of South America, applying several phylogenetic diversity (PD) metrics and randomization tests. Grasses appear to have been present in South America since their early evolution as tropical understory species more than 60 Ma. During the course of evolution, grasses have adapted to all terrestrial biomes and become one of the most successful plant families on earth. At present, the SC contains nearly all terrestrial biomes and a wide range of humid to arid ecoregions. Analyzing 126.514 point occurrences and four plastid markers for 148 genera (91% of the native grass genera), we found that tropical humid regions hold the highest PD, with no observed bias in branch lengths. These results indicate that niche conservatism dominates the diversity pattern of grasses in the SC. We found significantly low PD in the Dry Chaco and in the Patagonian Steppe, which suggest ecological filtering in both warm and cold arid regions. The Patagonian Steppe also holds significantly longer branches than expected by chance, as the native grass flora is mainly composed of distantly related Pooideae genera with a northern hemisphere origin. Short branches are found in the Uruguayan Savanna, suggesting that these grasslands could be a cradle for grass diversity within the SC. The dated phylogeny supported the current view of a relatively recent evolution of the family within the SC, with most diversification taking place from the middle Miocene and onwards.
Marchuk, E. A., A. K. Kvitchenko, L. A. Kameneva, A. A. Yuferova, and D. E. Kislov. 2024. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. Journal of Plant Research 137: 997–1018. https://doi.org/10.1007/s10265-024-01570-z
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
Chikowore, G., P. S. R. Weyl, and G. D. Martin. 2024. First record of Robinia hispida L. (Fabaceae) in South Africa. Biological Invasions. https://doi.org/10.1007/s10530-024-03425-z
The shrub, Robinia hispida L., commonly known as the bristly locust, is a native to southeastern United States. It has, however, expanded its range within North America, and established invasive native-alien populations in several American states and Canada. Outside of North America, R. hispida has been introduced to Europe and Asia, where it has naturalised and is considered invasive. Notably, the presence of this shrub has never been reported outside of cultivation in Africa. Despite receiving little scientific attention compared to its congeneric species such as the global invader Robinia pseudoacacia L., R. hispida shares morphological and growth characteristics including rapid growth and a suckering habit. It occupies similar environmental niches in both native and introduced ranges, thriving in thin upland woodlands, woodland edges, thickets, fence rows, roadside embankments, banks of drainage canals, vacant lots, and overgrown waste areas. In South Africa, R. hispida was first recorded in a garden in Polokwane in 1986, while the first record outside of cultivation was near the town of Bethlehem in the Free State Province in 2023, and further surveys were conducted locating additional populations near the towns of Zastron and Clarens in 2024. The potential distribution of R. hispida in South Africa was modelled in MaxEnt using areas climatically representative of the species, based on the Koppen-Geiger climate classifications. The potential distribution includes areas of central South Africa, the east and south coast and the Mediterranean climates of the southern Cape. Management strategies suggested for R. hispida in South Africa, considering the small size of the populations, should include eradication efforts using mechanical and chemical means, followed by continuous monitoring to prevent re-emergence.
H. S. Min, H. Shinwoo, and K. K. Soo. 2024. Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo. Journal of The Korean Society of Grassland and Forage Science 44: 71–82. https://doi.org/10.5333/kgfs.2024.44.2.71
It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.
Maharaj, S., B. W. Cowie, M. J. Byrne, and N. Venter. 2024. Insights into the invasion of the moth catcher vine, Araujia sericifera (Apocynaceae), in South Africa. South African Journal of Botany 171: 517–528. https://doi.org/10.1016/j.sajb.2024.06.034
The moth catcher vine, Araujia sericifera Brotero (Apocynaceae), is a prevalent invader in many countries worldwide, where it has been reported to be a significant threat to biodiversity and agriculture. However, limited knowledge exists surrounding the ecology, invasion and impacts of A. sericifera in South Africa, challenging the implementation of management efforts. Therefore, this study sought to understand the vine's invasion within a South African context. To determine the density of A. sericifera in response to ecological and socio-economic predictors, its abundance along roads in 42 Johannesburg suburbs was measured. Additionally, A. sericifera abundance was recorded on foot within two nature reserves in Johannesburg, where density estimates were found to be 29 times higher than those obtained via roadside surveys. At a local scale, there was no evidence to indicate that vegetation, urban cover, and median household income influence A. sericifera density, suggesting that the vine establishes indiscriminately across Johannesburg. To determine whether this opportunistic behaviour was reflected in the vine's recruitment, its emergence rates in response to shaded and full-sun conditions were investigated. Seedling emergence was higher under shaded conditions (47.8%) than under full-sun (11%). Using MaxEnt models, environmental variables affecting the plant's distribution in South Africa were identified. Human disturbance had a permutation importance of 85.6%, indicating that A. sericifera's establishment is largely driven by disturbance. While A. sericifera appears to be in its lag phase of invasion and is unlikely to invade natural ecosystems in the short term, its abundance in the two nature reserves suggests that management should be prioritised during this lag phase, prior to its potential expansion into less-disturbed areas.
Peralta, P. A., M. J. Nores, H. G. Bach, and F. O. Robbiati. 2024. Facing climate change: Range dynamics and chromosome diversity in Hedeoma multiflora Benth., a South American aromatic-medicinal plant at risk. Flora 315: 152519. https://doi.org/10.1016/j.flora.2024.152519
Climate change could significantly affect the geographic distribution of plant species. Hedeoma multiflora is a vulnerable medicinal and aromatic herb that distributes in the Pampa, Espinal and Chaco biogeographic provinces in austral South America. This integrated approach combines ecological models and cytogenetic evidence to assess the effects of climate change on this species. Species distribution modelling using the Maxent model was implemented under current climatic conditions and three future climate change scenarios, integrating data from three Global Climate Models. The most suitable areas span 68,557 km2, encompassing the Sierras Pampeanas in San Luis and Córdoba provinces, and the Tandilia and Ventania systems in Buenos Aires, Argentina. The primary variables influencing the models include elevation (500 to 2000 m.a.s.l.), annual mean temperature (10 to 17 °C), annual precipitation (500 to 900 mm) and precipitation seasonality (50 to 75%). While the results project an expansion in the potential distribution of the species, heterogeneous patterns of range shifts are predicted across the three mountain systems: expansion in Sierras Pampeanas, march in Ventania and retraction in the Tandilia system. Variations in chromosome numbers within four distinct localities were reported, indicating the presence of polyploidy. This could potentially provide adaptive advantages in response to changing climates. This plant lives in habitats that face human-induced alterations and insufficient area protected coverage, then we propose strategies for both in situ and ex situ conservation of this medicinal species in each area.
Ziegler, C., E. J. Martínez, A. I. Honfi, and A. V. Reutemann. 2024. Discovery of natural Paspalum L. (Poaceae) triploid hybrids near sympatric populations of Paspalum urvillei Steud. and species of Paniculata group in northeastern Argentina. Euphytica 220. https://doi.org/10.1007/s10681-024-03317-2
Hybridization and polyploidy are currently known as exponential factors for biodiversity. Some Paspalum species can hybridize and originate viable allopolyploids with possible agronomic use. We collected a frost resistance hybrid in north–western Misiones and determined its ploidy level, meiotic behavior, pollen viability, cytoembryology, and seed production in open and self-pollination. To elucidate its origin, we conducted a phenotypic and geographical analysis using herbarium specimens to establish its putative parental species. The hybrid was triploid, exhibiting irregular meiosis with the formation of non-viable pollen and undeveloped embryo sacs, resulting in very low seed production under both pollination conditions. Through morphological analysis, we identified Paspalum urvillei Steud. and the Paniculata group, i.e. Paspalum juergensii Hack., Paspalum umbrosum Trin., and Paspalum paniculatum L., as the putative parental species. Geographic distribution patterns suggested a possible hybridization event between P. urvillei and P. umbrosum , though further investigation is needed to precisely identify which species from the Paniculata group hybridized with P. urvillei. Future studies will help to unravel the complex genetic interactions underlying hybridization in Paspalum species and contribute to our understanding of biodiversity dynamics.