Ciencia habilitada por datos de especímenes
Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022
Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).
Okamura, Y., A. Sato, L. Kawaguchi, A. J. Nagano, M. Murakami, H. Vogel, and J. Kroymann. 2022. Microevolution of Pieris butterfly genes involved in host plant adaptation along a host plant community cline. Molecular Ecology 31: 3083–3097. https://doi.org/10.1111/mec.16447
Herbivorous insects have evolved counteradaptations to overcome the chemical defenses of their host plants. Several of these counteradaptations have been elucidated at the molecular level, in particular for insects specialized on cruciferous host plants. While the importance of these counteradaptations for host plant colonization is well established, little is known about their microevolutionary dynamics in the field. In particular, it is not known whether and how host plant diversity shapes diversity in insect counteradaptations. In this study, we examine patterns of host plant use and insect counteradaptation in three Pieris butterfly species across Japan. The larvae of these butterflies express nitrile‐specifier protein (NSP) and its paralog major allergen (MA) in their gut to overcome the highly diversified glucosinolate‐myrosinase defense system of their cruciferous host plants. Pieris napi and Pieris melete colonize wild Brassicaceae whereas Pieris rapae typically uses cultivated Brassica as a host, regardless of the local composition of wild crucifers. As expected, NSP and MA diversity was independent of the local composition of wild Brassicaceae in P. rapae. In contrast, NSP diversity correlated with local host plant diversity in both species that preferred wild Brassicaceae. P. melete and P. napi both revealed two distinct major NSP alleles, which shaped diversity among local populations, albeit with different evolutionary trajectories. In comparison, MA showed no indication for local adaptation. Altogether, MA appeared to be evolutionary more conserved than NSP, suggesting that both genes play different roles in diverting host plant chemical defense.
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Pelletier, T. A., B. C. Carstens, D. C. Tank, J. Sullivan, and A. Espíndola. 2018. Predicting plant conservation priorities on a global scale. Proceedings of the National Academy of Sciences 115: 13027–13032. https://doi.org/10.1073/pnas.1804098115
The conservation status of most plant species is currently unknown, despite the fundamental role of plants in ecosystem health. To facilitate the costly process of conservation assessment, we developed a predictive protocol using a machine-learning approach to predict conservation status of over 150…
Garroutte, M., F. Huettmann, C. O. Webb, and S. M. Ickert-Bond. 2018. Biogeographic and anthropogenic correlates of Aleutian Islands plant diversity: A machine-learning approach. Journal of Systematics and Evolution 56: 476–497. https://doi.org/10.1111/jse.12456
This is the first comprehensive analysis of vascular plant diversity patterns in the Aleutian Islands to identify and quantify the impact of Aleutian Island distance dispersal barriers, geographical, ecological and anthropogenic factors. Data from public Open Access databases, printed floristic acco…