Ciencia habilitada por datos de especímenes

Baltensperger, A., J. Hagelin, P. Schuette, A. Droghini, and K. Ott. 2022. High dietary and habitat diversity indicate generalist behaviors of northern bog lemmings Synaptomys borealis in Alaska, USA. Endangered Species Research 49: 145–158. https://doi.org/10.3354/esr01211

The northern bog lemming Synaptomys borealis (NBL) is a rare small mammal that is undergoing a federal Species Status Assessment (SSA) under the US Endangered Species Act. Despite a wide North American distribution, very little is known about NBL dietary or habitat needs, both of which are germane to the resiliency of this species to climate change. To quantify diet composition of NBL in Alaska, we used DNA metabarcoding from 59 archived specimens to describe the taxonomic richness and relative abundance of foods in recent diets. DNA analyses revealed a broad diet composed of at least 110 families and 92 genera of bryophytes (mosses and liverworts), graminoids, fungi, forbs, and woody shrubs. Nine bryophyte genera and Carex sedges composed the largest portions of NBL diets. To quantify habitat preference, we intersected 467 georeferenced occurrence records of NBL in Alaska with remotely sensed land cover classes and used a compositional analysis framework that accounts for the relative abundance of land cover types. We did not detect significant habitat preferences for specific land cover types, although NBL frequently occurred in evergreen forest, woody wetlands, and adjacent to water. Our research highlights the importance of bryophytes, among a high diversity of dietary components, and describes NBL as boreal habitat generalists. Results will inform the current federal SSA by quantifying the extent to which ecological constraints are likely to affect NBL in a rapidly changing boreal environment.

Escolástico-Ortiz, D. A., L. Hedenäs, D. Quandt, D. Harpke, J. Larraín, M. Stech, and J. C. Villarreal A. 2022. Cryptic speciation shapes the biogeographic history of a northern distributed moss. Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boac027

Abstract Increasing evidence indicates that wide distributed bryophyte taxa with homogeneous morphology may represent separate evolutionary lineages. The evolutionary histories of these cryptic lineages may be related to historical factors, such as the climatic oscillations in the Quaternary. Thus, the post-glacial demographic signatures paired with cryptic speciation may result in complex phylogeographic patterns. This research has two aims: to determine whether the widespread moss Racomitrium lanuginosum represents cryptic molecular taxa across the Northern Hemisphere and to infer the effects of Quaternary glaciations on spatial genetic diversity. We used the internal transcribed spacer (ITS) marker to resolve the phylogeographic history of the species and single nucleotide polymorphisms (genotyping-by-sequencing) to infer the genetic structure and demographic history. Finally, we assessed the historical changes in the distribution range using species distribution models. Racomitrium lanuginosum comprises distinct molecular lineages sympatrically distributed in the Northern Hemisphere. We also uncovered long-distance dispersal from eastern North America to Scandinavia and potential in situ survival in northern Scandinavia. Due to the genetic signatures, the Alaska Peninsula could be considered a glacial refugium. The species experienced post-glacial expansion northwards in the Northern Hemisphere, mainly from the Alaska Peninsula. Our results exemplify the complex phylogeographic history in cold environments and contribute to recognizing evolutionary patterns in the Northern Hemisphere.

Fedosov, V. E., A. V. Shkurko, A. V. Fedorova, E. A. Ignatova, E. N. Solovyeva, J. C. Brinda, M. S. Ignatov, and J. Kučera. 2022. Need for split: integrative taxonomy reveals unnoticed diversity in the subaquatic species of Pseudohygrohypnum (Pylaisiaceae, Bryophyta). PeerJ 10: e13260. https://doi.org/10.7717/peerj.13260

We present an integrative molecular and morphological study of subaquatic representatives of the genus Pseudohygrohypnum (Pylaisiaceae, Bryophyta), supplemented by distribution modelling of the revealed phylogenetic lineages. Phylogenetic analyses of nuclear and plastid datasets combined with the assemble species by automatic partitioning (ASAP) algorithm revealed eight distinct species within the traditionally circumscribed P. eugyrium and P. subeugyrium. These species are therefore yet another example of seemingly widely distributed taxa that harbour molecularly well-differentiated lineages with narrower distribution ranges. Studied accessions that were previously assigned to P. eugyrium form three clearly allopatric lineages, associated with temperate regions of Europe, eastern North America and eastern Asia. Remarkably, accessions falling under the current morphological concept of P. subeugyrium were shown to be even more diverse, containing five phylogenetic lineages. Three of these lineages occur under harsh Asian continental climates from cool-temperate to Arctic regions, while the remaining two, referred to P. subeugyrium s.str. and P. purpurascens, have more oceanic North Atlantic and East Asian distributions. Niche identity and similarity tests suggested no similarity in the distributions of the phylogenetically related lineages but revealed the identity of two East Asian species and the similarity of two pairs of unrelated species. A morphological survey confirmed the distinctness of all eight phylogenetic lineages, requiring the description of five new species. Pseudohygrohypnum appalachianum and P. orientale are described for North American and East Asian plants of P. eugyrium s.l., while P. sibiricum, P. subarcticum and P. neglectum are described for the three continental, predominantly Asian lineages of P. subeugyrium s.l. Our results highlight the importance of nontropical Asia as a center of bryophyte diversity. Phylogenic dating suggests that the diversification of subaquatic Pseudohygrohypnum lineages appeared in late Miocene, while mesophilous species of the genus split before Miocene cooling, in climatic conditions close to those where the ancestor of Pseudohygrohypnum appeared. We speculate that radiation of the P. subeugyrium complex in temperate Asia might have been driven by progressive cooling, aridification, and increases in seasonality, temperature and humidity gradients. Our results parallel those of several integrative taxonomic studies of North Asian mosses, which have resulted in a number of newly revealed species. These include various endemics from continental areas of Asia suggesting that the so-called Rapoport’s rule of low diversity and wide distribution range in subpolar regions might not be applicable to bryophytes. Rather, the strong climatic oscillations in these regions may have served as a driving force of speciation and niche divergence.

Campbell, C., G. Granath, and H. Rydin. 2021. Climatic drivers of Sphagnum species distributions. Frontiers of Biogeography 13. https://doi.org/10.21425/f5fbg51146

Peatmosses(genus Sphagnum) dominate most Northern mires and show distinct distributional limits in Europe despite having efficient dispersal and few dispersal barriers. This pattern indicates that Sphagnum species distributions are strongly linked to climate. Sphagnumdominated mires have been the la…

Popov, S. Yu. 2021. Northern distribution limits of Sphagnum wulfianum (Sphagnaceae, Bryophyta) in the Northern Palearctic – records from tundra: coincidence or rule? Novosti sistematiki nizshikh rastenii 55: 475–486. https://doi.org/10.31111/nsnr/2021.55.2.475

Sphagnum wulfianum is a widespread circumboreal species in the Northern Hemisphere. The distribution of this species in the Northern Palearctic was studied by generalizing and combining data from open sources (GBIF, literature data) and herbarium samples from LE, MW, NSK, and MHA into a single datab…

TREVIÑO-ZEVALLOS, I., I. GARCÍA-CUNCHILLOS, and C. LADO. 2021. New records of Myxomycetes (Amoebozoa) from the tropical Andes. Phytotaxa 522: 231–239. https://doi.org/10.11646/phytotaxa.522.3.6

The Myxomycetes comprise a remarkably diverse group of organisms within Amoebozoa, with over 1000 species currently recognized. These organisms, at the end of their life cycles produce fruiting bodies which are the basis for their systematics. Despite being a biodiversity hotspot, the tropical Andes…

Wierzcholska, S., M. K. Dyderski, and A. M. Jagodziński. 2020. Potential distribution of an epiphytic bryophyte depends on climate and forest continuity. Global and Planetary Change 193: 103270. https://doi.org/10.1016/j.gloplacha.2020.103270

Woodland-specialist epiphytic bryophytes are both a threatened ecological guild of forest species as well as a precise bioindicator of conservation value of forest ecosystems. However, due to lack of data on distribution, there is no information about their potential reaction to predicted climate ch…