Ciencia habilitada por datos de especímenes

Quillfeldt, P., Y. Bedolla-Guzmán, M. M. Libertelli, Y. Cherel, M. Massaro, and P. Bustamante. 2023. Mercury in Ten Storm-Petrel Populations from the Antarctic to the Subtropics. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-023-01011-3

The oceans become increasingly contaminated as a result of global industrial production and consumer behaviour, and this affects wildlife in areas far removed from sources of pollution. Migratory seabirds such as storm-petrels may forage in areas with different contaminant levels throughout the annual cycle and may show a carry-over of mercury from the winter quarters to the breeding sites. In this study, we compared mercury levels among seven species of storm-petrels breeding on the Antarctic South Shetlands and subantarctic Kerguelen Islands, in temperate waters of the Chatham Islands, New Zealand, and in temperate waters of the Pacific off Mexico. We tested for differences in the level of contamination associated with breeding and inter-breeding distribution and trophic position. We collected inert body feathers and metabolically active blood samples in ten colonies, reflecting long-term (feathers) and short-term (blood) exposures during different periods ranging from early non-breeding (moult) to late breeding. Feathers represent mercury accumulated over the annual cycle between two successive moults. Mercury concentrations in feathers ranged over more than an order of magnitude among species, being lowest in subantarctic Grey-backed Storm-petrels (0.5 μg g −1 dw) and highest in subtropical Leach’s Storm-petrels (7.6 μg g −1 dw, i.e. posing a moderate toxicological risk). Among Antarctic Storm-petrels, Black-bellied Storm-petrels had threefold higher values than Wilson’s Storm-petrels, and in both species, birds from the South Shetlands (Antarctica) had threefold higher values than birds from Kerguelen (subantarctic Indian Ocean). Blood represents mercury taken up over several weeks, and showed similar trends, being lowest in Grey-backed Storm-petrels from Kerguelen (0.5 μg g −1 dw) and highest in Leach’s Storm-petrels (3.6 μg g −1 dw). Among Antarctic storm-petrels, species differences in the blood samples were similar to those in feathers, but site differences were less consistent. Over the breeding season, mercury decreased in blood samples of Antarctic Wilson’s Storm-petrels, but did not change in Wilson’s Storm-petrels from Kerguelen or in Antarctic Black-bellied Storm-petrels. In summary, we found that mercury concentrations in storm-petrels varied due to the distribution of species and differences in prey choice. Depending on prey choices, Antarctic storm-petrels can have similar mercury concentrations as temperate species. The lowest contamination was observed in subantarctic species and populations. The study shows how seabirds, which accumulate dietary pollutants in their tissues in the breeding and non-breeding seasons, can be used to survey marine pollution. Storm-petrels with their wide distributions and relatively low trophic levels may be especially useful, but more detailed knowledge on their prey choice and distributions is needed.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Alban, D. M., E. M. Biersma, J. W. Kadereit, and M. S. Dillenberger. 2021. Colonization of the Southern Hemisphere by Sagina and Colobanthus (Caryophyllaceae). Plant Systematics and Evolution 308. https://doi.org/10.1007/s00606-021-01793-w

Colobanthus (23 species) and Sagina (30–33 species) together are sister to Facchinia. Whereas Facchinia is distributed in western Eurasia, Colobanthus is almost exclusively distributed in the Southern Hemisphere, and Sagina is distributed in both hemispheres with the highest species diversity in wes…

Miller, E. F., R. E. Green, A. Balmford, P. Maisano Delser, R. Beyer, M. Somveille, M. Leonardi, et al. 2021. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Molecular Ecology 30: 3993–4004. https://doi.org/10.1111/mec.16032

During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species …