Ciencia habilitada por datos de especímenes

Williams, C. J. R., Lunt, D. J., Salzmann, U., Reichgelt, T., Inglis, G. N., Greenwood, D. R., Chan, W., Abe‐Ouchi, A., Donnadieu, Y., Hutchinson, D. K., Boer, A. M., Ladant, J., Morozova, P. A., Niezgodzki, I., Knorr, G., Steinig, S., Zhang, Z., Zhu, J., Huber, M., & Otto‐Bliesner, B. L. (2022). African hydroclimate during the early Eocene from the DeepMIP simulations. Paleoceanography and Paleoclimatology. Portico. https://doi.org/10.1029/2022pa004419 https://doi.org/10.1029/2022pa004419

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Reichgelt, T., Greenwood, D. R., Steinig, S., Conran, J. G., Hutchinson, D. K., Lunt, D. J., Scriven, L. J., & Zhu, J. (2022). Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology. Portico. https://doi.org/10.1029/2022pa004418 https://doi.org/10.1029/2022pa004418

During the early to middle Eocene, a mid‐to‐high latitudinal position and enhanced hydrological cycle in Australia would have contributed to a wetter and “greener” Australian continent where today arid to semi‐arid climates dominate. Here, we revisit 12 southern Australian plant megafossil sites from the early to middle Eocene to generate temperature, precipitation and seasonality paleoclimate estimates, net primary productivity (NPP) and vegetation type, based on paleobotanical proxies and compare to early Eocene global climate models. Temperature reconstructions are uniformly subtropical (mean annual, summer, and winter mean temperatures 19–21 °C, 25–27 °C and 14–16 °C, respectively), indicating that southern Australia was ∼5 °C warmer than today, despite a >20° poleward shift from its modern geographic location. Precipitation was less homogeneous than temperature, with mean annual precipitation of ∼60 cm over inland sites and >100 cm over coastal sites. Precipitation may have been seasonal with the driest month receiving 2–7× less than mean monthly precipitation. Proxy‐model comparison is favorable with an 1680 ppm CO2 concentration. However, individual proxy reconstructions can disagree with models as well as with each other. In particular, seasonality reconstructions have systemic offsets. NPP estimates were higher than modern, implying a more homogenously “green” southern Australia in the early to middle Eocene, when this part of Australia was at 48–64 °S, and larger carbon fluxes to and from the Australian biosphere. The most similar modern vegetation type is modern‐day eastern Australian subtropical forest, although distance from coast and latitude may have led to vegetation heterogeneity.

Colli-Silva, M., Pirani, J. R., & Zizka, A. (2022). Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics, 101668. https://doi.org/10.1016/j.ecoinf.2022.101668 https://doi.org/10.1016/j.ecoinf.2022.101668

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.

Camacho, F., & Peyre, G. (2022). Red List and Vulnerability Assessment of the Páramo Vascular Flora in the Nevados Natural National Park (Colombia). Tropical Conservation Science, 15, 194008292210869. https://doi.org/10.1177/19400829221086958 https://doi.org/10.1177/19400829221086958

Background and research aims. The Andean páramo is renowned for its unique biodiversity and sensitivity to environmental threats. However, vulnerability assessments remain scarce, which hinders our capacity to prioritize and apply efficient conservation measures. To this end, we established the Red List of the páramo vascular flora from the Nevados National Natural Park and proposed conservation strategies for its threatened species. Methods. We performed International Union for Conservation of Nature (IUCN) Red List assessments by evaluating Criterion B, including sub-criteria B1–Extent of Occurrence and B2–Area of Occupancy, and using a systematic geographic-ecological approach for conditions a (Location analysis) and b (Continuing decline). We then executed a Conservation Gap Analysis to prioritize species for in- situ and/or ex-situ conservation. Results. Summing our 233 evaluated species with previous assessments, we completed the Red List of 262 páramo species and encountered 3% Threatened (7 VU, one EN), 44% Not Threatened (65 LC, 50 NT), and 53% Data Deficient. We acknowledged Lupinus ruizensis as Endangered and Aequatorium jamesonii, Carex jamesonii, Elaphoglossum cuspidatum, Miconia latifolia, Miconia alborosea, Pentacalia gelida, and Themistoclesia mucronata as Vulnerable. Conclusion. The eight threatened species should be included as target species in the PNN Nevados management plan 2023–2028 and regarded as national conservation priorities. Implications for Conservation. We recommend in-situ conservation for Medium-Priority species A. jamesonii, E. cuspidatum, and T. mucronata with thorough monitoring, paired with sub-population transfers for High-Priority species C. jamesonii. For the endemic L. ruizensis and P. gelida, we suggest combined in-situ/ex-situ strategies taking advantage of national germoplasm collections, like the seed bank of the Bogotá Botanical Garden José Celestino Mutis.

Chevalier, M. (2022). <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past, 18(4), 821–844. https://doi.org/10.5194/cp-18-821-2022 https://doi.org/10.5194/cp-18-821-2022

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.

Sarker, U., Lin, Y.-P., Oba, S., Yoshioka, Y., & Hoshikawa, K. (2022). Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2022.04.011 https://doi.org/10.1016/j.plaphy.2022.04.011

Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as ‘hidden hunger.’ Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.

Sluiter, I. R. K., Holdgate, G. R., Reichgelt, T., Greenwood, D. R., Kershaw, A. P., & Schultz, N. L. (2022). A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 596, 110985. https://doi.org/10.1016/j.palaeo.2022.110985 https://doi.org/10.1016/j.palaeo.2022.110985

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.

Figueiredo, P. H. A., Sánchez‐Tapia, A., de Siqueira, M. F., & Sansevero, J. B. B. (2022). Linking regeneration niche to monodominance in biodiverse tropical forest landscapes. Journal of Vegetation Science. Portico. https://doi.org/10.1111/jvs.13128 https://doi.org/10.1111/jvs.13128

Aims Although monodominance has attracted the attention of ecologists for many decades, only a few studies have devoted attention to how abiotic factors could influence the occurrence of monodominant forest patches on the biome scale. Here, we assessed whether the occurrence of monodominant forest patches of Moquiniastrum polymorphum (Less.) G. Sancho (Asteraceae), an early successional tree species with wind-dispersed seeds, could be predicted by optimum germination temperature and past deforestation. We also verified in what edaphic and climatic conditions the species could reach monodominance; Location The Atlantic Forest, Brazil Methods We estimated the optimum germination temperature across the species’ geographic range as a function of annual mean temperature based on the results of germination tests available in the literature. Past deforestation (a proxy of suitable habitat for the species’ dispersal and establishment) around monodominant forest patches was estimated by calculating the forest cover in 1985. We also modeled the upper limit of the dominance (relative abundance) as a function of climatic and edaphic variables considered important for the species’ establishment. Results The results showed that the probability of occurrence of monodominant forest patches is statistically null in places where the germination time can take more than 10 days and the landscape had more than 20% of forest cover. The values of relative density at monodominant condition (> 60%) occurred only in warmer regions with infertile soils and median precipitation conditions (about 1,075 mm to 1,700 mm per year) in the Atlantic Forest. Conclusion We conclude that only under optimal conditions of germination and dispersal (i.e., regeneration niche) does monodominance occur. This highlights germination traits as an important mechanism for regulating monodominance. In addition, the approach used to predict regions with optimum germination temperature has further implications for understanding species abundance and distribution more generally.

Afonin, A. N., Baranova, O. G., Fedorova, Y. A., Abramova, L. M., Boshko, T. F., Kotsareva, N. V., Li, Yu. S., Milyutina, E. A., Pikalova, N. A., Prokhorov, V. E., & Senator, S. A. (2022). ECOLOGICAL AND GEOGRAPHICAL POTENTIAL OF <i>AMBROSIA ARTEMISIIFOLIA</i> L. DISTRIBUTION TO THE NORTH OF THE EUROPEAN RUSSIA BASED ON A COMPARISON OF THE NORTHERN BOUNDARIES OF THE PRIMARY AND SECONDARY RANGES. Russian Journal of Biological Invasions, 15(1), 2–12. https://doi.org/10.35885/1996-1499-15-1-2-12 https://doi.org/10.35885/1996-1499-15-1-2-12

В ходе экспедиционных исследований уточнена современная фактическая граница натурализации Аmbrosia artemisiifolia на Европейской территории России. Эта граница проходит по югу Брянской, Курской и Саратовской, северу Воронежской областей. Общая протяжённость экспедиционных маршрутов составила около 8900 км, количество обследованных точек – 777. В целях выявления потенциала дальнейшего продвижения вида на север проведён сравнительный эколого-географический анализ и моделирование распространения амброзии на севере её вторичного ареала на Европейской территории России и первичного – в Канаде. Выявлено, что основным фактором, лимитирующим продвижение вида на север, служит недостаточная теплообеспеченность периода созревания семян. Для определения эколого-географической ниши амброзии была составлена глобальная карта распределения сумм активных температур с порогом выше 10 °С за период от даты перехода длины дня через 14 часов после летнего солнцестояния до устойчивого перехода осенних температур через 0 °С (САТфп). Было определено значение САТфп на самых северных точках натурализации Аmbrosia artemisiifolia на Европейской территории России и в Канаде. Сравнение эколого-географических границ по фактору теплообеспеченности на Европейской территории России и в Канаде показало, что реализованная видом эколого-географическая ниша на Североамериканском континенте в настоящее время в целом шире, чем на Европейской территории России. Рассмотрены возможные причины, по которым амброзия не освоила всю потенциальную экологическую нишу на Европейской территории России, сделаны предположения о возможности дальнейшего продвижения вида на север. Амброзия по фактору теплообеспеченности на Европейской территории России может продвинуться дальше на север – в Брянскую, Орловскую, Липецкую, Тамбовскую, Саратовскую, Оренбургскую, южную половину Пензенской, юг Ульяновской, Самарской областей и Башкортостана. Дополнительные проблемы с продвижением вида в северо-восточном направлении на Европейской территории России могут быть обусловлены сопряжённым неблагоприятным воздействием дополнительного фактора – недостаточной влагообеспеченности, поскольку от Саратовской области и восточнее амброзия на северном пределе распространения находится в зоне экологического пессимума одновременно по показателям тепло- и влагообеспеченности.

Coetzee, J. A., Hill, M. P., Ruiz-Téllez, T., Starfinger, U., & Brunel, S. (2017). Monographs on invasive plants in Europe N° 2: Eichhornia crassipes (Mart.) Solms. Botany Letters, 164(4), 303–326. https://doi.org/10.1080/23818107.2017.1381041 https://doi.org/10.1080/23818107.2017.1381041

Eichhornia crassipes is notorious as the world’s worst aquatic weed, and here we present all aspects of its biology, ecology and invasion behaviour within the framework of the new series of Botany Letters on Monographs on invasive plants in Europe. Native to the Amazon in South America, the plant has been spread around the world since the late 1800s through the ornamental plant trade due to its attractive lilac flowers, and is established on every continent except Antarctica. Its distribution is limited in Europe to the warmer southern regions by cold winter temperatures, but it has extensive ecological and socio-economic impacts where it invades. Its reproductive behaviour, characterised by rapid vegetative spread and high seed production, as well as its wide physiological tolerance, allows it to proliferate rapidly and persist in a wide range of environments. It has recently been regulated by the EU, under Regulation No. 1143/2014, which states that E. crassipes shall not be brought into the territory of the Union, kept, bred or transported to, from or within the Union. However, in the absence of effective control measures, such as herbicidal and biological control, it will continue to be a significant threat to European waterways, particularly in eutrophic waters, and under future climate change scenarios.