Ciencia habilitada

ENETWILD consortium, S. Croft, G. Smith, P. Acevedo, and J. Vicente. 2019. Wild boar in focus: initial model outputs of wild boar distribution based on occurrence data and identification of priority areas for data collection. EFSA Supporting Publications 16. https://doi.org/10.2903/sp.efsa.2019.EN-1533

By reviewing the different types of data targeted by the ENETWILD Wild Boar Data Collection Model (occurrence, hunting bag, abundance data) that have become available, an initial model could be built with occurrence data. A preliminary model analysis was performed to estimate the likely distribution…

Fekede, R. J., H. Gils, L. Huang, and X. Wang. 2019. High probability areas for ASF infection in China along the Russian and Korean borders. Transboundary and Emerging Diseases 66: 852–864. https://doi.org/10.1111/tbed.13094

African swine fever (ASF) is a transcontinental, contagious, fatal virus disease of pig with devastating socioeconomic impacts. Interaction between infected wild boar and domestic pig may spread the virus. The disease is spreading fast from the west of Eurasia towards ASF‐free China. Consequently, p…

Crespo-Mendes, N., A. Laurent, and M. Z. Hauschild. 2018. Effect factors of terrestrial acidification in Brazil for use in Life Cycle Impact Assessment. The International Journal of Life Cycle Assessment 24: 1105–1117. https://doi.org/10.1007/s11367-018-1560-7

Purpose:In Life Cycle Impact Assessment, atmospheric fate factors, soil exposure factors, and effect factors are combined to characterize potential impacts of acidifying substances in terrestrial environments. Due to the low availability of global data sets, effect factors (EFs) have been reported a…

Crespo-Mendes, N., A. Laurent, H. H. Bruun, and M. Z. Hauschild. 2019. Relationships between plant species richness and soil pH at the level of biome and ecoregion in Brazil. Ecological Indicators 98: 266–275. https://doi.org/10.1016/j.ecolind.2018.11.004

Soil pH has been used to indicate how changes in soil acidity can influence species loss. The correlation between soil pH and plant species richness has mainly been studied in North America and Europe, while there is a lack of studies exploring Tropical floras. Here, our aim was therefore to investi…

Milla, R., J. M. Bastida, M. M. Turcotte, G. Jones, C. Violle, C. P. Osborne, J. Chacón-Labella, et al. 2018. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology & Evolution 2: 1808–1817. https://doi.org/10.1038/s41559-018-0690-4

The origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we invest…

Park, D. S., and O. H. Razafindratsima. 2018. Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography 42: 148–161. https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …

Antonelli, A., A. Zizka, F. A. Carvalho, R. Scharn, C. D. Bacon, D. Silvestro, and F. L. Condamine. 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences 115: 6034–6039. https://doi.org/10.1073/pnas.1713819115

The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…

Faurby, S., and M. B. Araújo. 2018. Anthropogenic range contractions bias species climate change forecasts. Nature Climate Change 8: 252–256. https://doi.org/10.1038/s41558-018-0089-x

Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to …

Dauby, G., T. Stévart, V. Droissart, A. Cosiaux, V. Deblauwe, M. Simo-Droissart, M. S. M. Sosef, et al. 2017. ConR : An R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecology and Evolution 7: 11292–11303. https://doi.org/10.1002/ece3.3704

The Red List Categories and the accompanying five criteria developed by the International Union for Conservation of Nature (IUCN) provide an authoritative and comprehensive methodology to assess the conservation status of organisms. Red List criterion B, which principally uses distribution data, is …

Uludag, A., N. Aksoy, A. Yazlık, Z. F. Arslan, E. Yazmış, I. Uremis, T. A. Cossu, et al. 2017. Alien flora of Turkey: checklist, taxonomic composition and ecological attributes. NeoBiota 35: 61–85. https://doi.org/10.3897/neobiota.35.12460

The paper provides an updated checklist of the alien flora of Turkey with information on its structure. The alien flora of Turkey comprises 340 taxa, among which there are 321 angiosperms, 17 gymnosperms and two ferns. Of the total number of taxa, 228 (68%) are naturalized and 112 (32%) are casual. …